首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The 2,5-dimethylidene-3,6-bis[(Z)-(2-nitrophenyl)sulfenylmethylidene]-7-oxabicyclo[2.2.1]heptane ( 13 ) can be used to generate polyfunctional and multicyclic molecules with high regio- and stereoselectivity via two successive Diels-Alder additions using two different dienophiles. This principle has been applied to the synthesis of (±)-11-deoxydaunomycinone ( 7 ), the aglycone of an important antitumor drug. The 2,3-didehydroanisole adds to 13 and gives the monoadduct 14 with high regioselectivity. No trace of bis-adduct is observed. The 1,4-epoxy-1,2,3,4-tetrahydro-5-methoxy-3-methylidene-2-[(Z)-(2-nitrophenyl)sulfenylmethylidene]anthracene ( 15 ) obtained on treating 14 with K2CO3 adds to methyl vinyl ketone to give [(1RS, 2SR, 5RS,12RS)-5,12-epoxy-1,2,3,4,5,12-hexahydro-7-methoxy-1-(2-nitrophenyl)sulfenyl-2-naphthacenyl]methyl ketone ( 16 ) with high regio- and stereoselectivity. The acid-catalyzed 7-oxanorbornadiene→phenol rearrangement of 16 is regioselective and gives (5-acetoxy-3,4-dihydro-7-methoxy-2-naphthacenyl) methyl ketone ( 20 ) which was transformed into (±)-7,11-dideoxydaunomycinone ((±)- 24 ), a known precursor of 7 .  相似文献   

2.
The syntheses of 2,3-dimethylidene- and 2,3,5,6-tetramethylidene-7-oxabicyclo[2.2.1]heptanes substituted in position C(1) are reported. The 1-dimethoxymethyl group in derivatives 2 and 6 controls the regioselectivity of the Lewis-acid-catalyzed Diels-Alder additions with methyl vinyl ketone and butynone. For the EtAlCl2-catalyzed addition of methyl vinyl ketone to 6 , the regioselectivity can be reversed by a small solvent modification. The tetraene 2 is a versatile reagent for regioselective ‘tandem’ cycloadditions.  相似文献   

3.
The syntheses of 2,3,5-trimethylidenebicyclo[2.2.1]heptane ( 1 ) and 2,3,5,6,7-pentamethylidenebicyclo[2.2.2]-octane ( 2 ) are reported. The Diels-Alder additions of the diene moieties of these polyenes can be regioselective, probably because of a possible transannular interaction between the homoconjugated methylidene and s-cis-buta-diene groups.  相似文献   

4.
Stereoselective syntheses of 2exo, 3exo-bis (chloromethyl)-5-[(Z)-chloromethylidene]- ( 9 ), 2exo, 3exo-bis (chloromethyl)5-[(E)-chloromethylidene]- ( 10 ) and 2exo, 3exo-bis(chloromethyl)-5-[(E)-methoxymethylidene]-6-niethylidene-7-oxa-bicyclo[2.2.1]heptane ( 13 ) are presented. Double elimination of HCI from 9, 10 and 13 yielded 2-[(Z)-chloromethylidene]- ( 14 ), 2-[(E)chloromethylidene]- ( 15 ) and 2-[(E)-methoxymethylidene]-3,5,6-mmethylidene-7-oxabicycio[2.2.1]heptane ( 18 ), respectively, without loss of the olefin configuration. Ethylene tetracarbonitrile (TCE) and N-phenyltriazolinedione (NPTAD) added to these new exocyclic dienes and tetraenes preferentially onto their exo-face. The same face selectivity was observed for the cycloadditions of TCE to the (Z)- and (E)-chlorodienes 9 and 10 , thus realizing a case where the kinetic stereoselectivity of the additions is proven not to be governed by the stability of the adducts. The exo-face selectivity of the Diels-Alder additions of dienes grafted onto 7-oxabicyclo [2,2.1]heptanes contrasts with the endo-face selectivity reported for a large number of cycloadditions of dienes grafted onto bicyclo[2.2.1]heptane skeletons.  相似文献   

5.
Racemic 6-ethenyl-7-oxabicyclo[2.2.1]hept-5-en-2-one ( 23 ), 5-ethenyl-7-oxabicyclo[2.2.1]hept-5-en-2-one ( 25 ) and their ethylene acetals 24 and 26 , respectively, were derived from the Diels-Alder adduct of furan to 1-cyanovinyl acetate ( 27 ). The Diels-Alder additions of 26 to dimethyl acetylenedicarboxylate, to methyl propynoate, to N-phenylmaleimide, and to methyl acrylate were highly exo-face selective, as were the cycloadditions of methyl propynoate to dienones 23 and 25 and of dimethyl acetylenedicarboxylate to ethylenedioxy-diene 24 . The cheletropic additions of SO2 to 23 – 26 gave exclusively the corresponding sulfolenes 57 – 60 resulting from the exo-face attack of the semicyclic dienes under conditions of kinetic and thermodynamic control.  相似文献   

6.
Epoxidation of (?)-(1R,2R,4R)-2-endo-cyano-7-oxabicyclo[2.2.1]hept-5-en-2-exo-yl acetate ((?)-5) followed by saponification afforded (+)-(1R,4R,5R,6R)-5,6-exo-epoxy-7-oxabicyclo[2.2.1]heptan-2-one ((+)-7). Reduction of (+)-7 with diisobutylaluminium hydride (DIBAH) gave (+)-1,3:2,5-dianhydroviburnitol ( = (+)-(1R,2R,3S,4R,6S)-4,7-dioxatricyclo[3.2.1.03,6]octan-2-ol; (+)-3). Hydride reductions of (±)-7 were less exo-face selective than reductions of bicyclo[2.2.1]heptan-2-one and its derivatives with NaBH4, AlH3, and LiAlH4 probably because of smaller steric hindrance to endo-face hydride attack when C(5) and C(6) of the bicyclo-[2.2.1]heptan-2-one are part of an exo oxirane ring.  相似文献   

7.
IrCl3·3H2O or FeCl3-catalyzed convenient synthesis of 3-hydroxyphthalates has been achieved by a Diels-Alder reaction of furans with dimethyl acetylenedicarboxylate, followed by ring-opening aromatization reaction of the Diels-Alder adducts, 7-oxabicyclo[2.2.1]hepta-2,5-diene derivatives. In addition, 7-azabicyclo[2.2.1]hepta-2,5-diene derivative, derived from N-Boc-pyrrole and dimethyl acetylenedicarboxylate, also converted into 3-aminophthalate derivative.  相似文献   

8.
Syntheses of 7,7-diphenyl[2.2.1]hericene ( 4 ) and 7-oxa[2.2.1]hericene ( 5 ) are presented. Rate constants k1 and k2 of the two successive Diels-Alder additions of ethylenetetracarbonitrile (TCE) to 4 and to 5 have been evaluated. At 25° in toluene, the rate-constant ratio k1/k2 = 260 and 21 for 4 and 5 , respectively. These results are compared with those reported for the tandem Diels-Alder reactivity of 2,3,5,6-tetramethylidenebicyclo[2.2.1]heptane and other derivatives.  相似文献   

9.
The difficult Diels-Alder additions of α-acetoxy- and α-chloroacrylonitrile to furan can be run at 20–35° and atmospheric pressure in the presence of CuCl. Cu(BF4) · 6 H2O, Cu(OOCCH3)2 · H2O or cupric tartrate · 3H2O. Under kinetic control, the exo-carbonitrile adducts 2 and 8 , respectively, are favoured. Saponification of the 2endo-acetoxy-7-oxabicyclo[2.2.1]hept-5-ene-2exo-carbonitrile ( 2 ) furnished the 7-oxabicyclo[2.2.1]hept-5-en-2-one ( 4 ). Basic hydrolysis of the adducts ( 8 + 9 ) of α-chloroacrylonitrile to furan and its 5exo, 6exo-isopropylidenedioxy derivatives did not give the corresponding ketones, the carboxamides 14 + 15 and 16 + 17 , respectively, were isolated.  相似文献   

10.
The endocyclic double bond C(2), C(3) in 5,6-dimethylidene-7-oxabicyclo[2.2.1]-hept-2-ene ( 1 ) can he coordinated selectively on its exo-face before complexation of the exocyclic s-cis-butadiene moiety. Irradiation of Ru3(CO)12 or Os3(CO)12 in the presence of 1 gave tetracarbonyl [(1R,2R, 3S,4S)-2,3-η-(5,6-dimethylidene-7-oxabicyclo[2.2.1]-hept-2-ene)]ruthenium ( 6 ) or -osmium ( 8 ). Similarly, irradiation of Cr(CO)6 or W(CO)6 in the presence of 1 gave pentacarbonyl[(1R, 2R, 3S,4S)-2,3-η-(5,6-dimethylidene-7-oxabicyclo[2.2.1]hept-2-ene)]chromium (10) or -tungsten (11) . Irradiation of complexes 6 and 11 in the presence of 1 led to further CO substitution giving bed-tricarbonyl-ae-bis[(1R,2R,3S,4S)-2,3-η-(5,6-dimethylidene-7-oxabicyclo[2.2.1]hept-2-ene)]ruthenium ( 7 ) and trans-tetracarbonyl[(1R,2R,3S,4S)-2,3-η-(5,6-dimethylidene-7-oxabicyclo-[2.2.1]hept-2-ene)]tungsten (12) , respectively. The diosmacyclobutane derivative cis-m?-[(1R,3R,3S,4S)-(5,6-dimethylidene-7-oxabicyclo[2.2.1]hepta-2,3-diyl)]bis(tetracarbonyl-osmium) (Os-Os) (9) wa also obtained. The Diels-Alder reactivity of the exocyclic s-cis-butadiene moiety in complexs 7 and 8 was found to be significantly higher than that of the free triene 1 .  相似文献   

11.
3-(4-Nitrophenyl)bicyclo[2.2.1]hepta-2,5-diene-2-carbaldehyde and its derivatives at the formyl group were synthesized. By reduction of the nitro group the corresponding 3-(4-aminophenyl)-substituted compounds were obtained, as well as 4,4'-bis(bicyclo[2.2.1]hepta-2,5-dien-2-yl)azobenzenes. Irradiation of the resulting norbornadiene derivatives in the region of their absorption maxima resulted in valence isomerization with formation of the corresponding quadricyclanes. The reverse transformations are promoted by molybdenum(VI) oxide as heterogeneous catalyst. 4,4'-Bis(bicyclo[2.2.1]hepta-2,5-dien-2-yl)azobenzenes undergo reversible (on heating) photochemical EZ/ isomerization at the NÍN bond.  相似文献   

12.
The Diels-Alder adduct of furan and 1-cyanovinyl (1′R)-camphanate was converted into methyl [(tert-butyl)-dimethylsilyl 5-deoxy-2, 3-O-isopropylidene-β-L -ribo-hexofuranosid] uronate ((+)- 4 ). Reduction with diisobutyl-aluminium hydride gave the corresponding aldehyde which was condensed with the ylide derived from triphenyl-(propyl)phosphonium bromide to give (1R, 2S, 3S, 4S)-1-[(tert-butyl)dimethylsilyloxy]tetrahedro-2, 3-(isopropyl-idenedioxy)-4-[(Z)-pent-2′ -enyl]furan ((+)- 7 ). Removal of the silyl protective group gave a mixture of the corresponding furanose that underwent Wittig reaction with the ylide derived from [8-(methoxycarbonyl)-octyl]triphenylphosphonium bromide to yield methyl (11R, 12S, 13S, 9Z, 15Z)-13-hydroxy-11, 12-(isopropylidene-dioxy)octadeca-9, 15-dienoate ((?)- 9 ). Acidic hydrolysis, then saponification afforded (11R, 12S, 13S, 9Z, 15Z)-11, 12, 13-trihydroxyoctadeca-9, 15-dienoic acid ( 1 ).  相似文献   

13.
In the presence of Me3Al, 1-cyanovinyl acetate added to 2,2′-ethylidenebis[3,5-dimethylfuran] ( 1 ) to give a 20:10:1:1 mixture of mono-adducts 4,5,6 , and 7 resulting from the same regiocontrol (‘para’ orienting effect of the 5-methyl substituent in 1 ). The additions of a second equiv. of dienophile to 4–7 were very slow reactions. The major mono-adducts 4 (solid) and 5 (liquid) have 2-exo-carbonitrile groups. The molecular structure of 4 (1RS,1′RS,2SR,4SR)-2-exo-cyano-4-[1-(3,5-dimethylfuran-2-yl)ethyl-7-oxabicyclo[2.2.1]hept-5-en-2-endo-yl acetate) was determined by X-ray single-crystal radiocrystallography. Mono-adducts 4 and 5 were saponified into the corresponding 7-oxanorbornenones 8 and 9 which were converted with high stereoselectivity into (1RS,1′SR,4RS,5RS,6RS)-4-[1-(3,5-dimethyl furan-2-yl)ethyl]-6-exo-methoxy-1,5-endo-dimethyl-7-oxabicyclo [2.2.1]heptan-2-one dimethyl acetal ( 12 ) and its (1′RS-stereoisomer 12a , respectively. Acetal hydrolysis of 12a followed by treatment with (t-Bu)Me2SiOSO2CF3 led to silylation and pinacol rearrangement with the formation of (1RS,1′RS,5RS,6RS)-4-[(tert-butyl)dimethy lsilyloxy]-1-(3,5-dimethylfuran-2-yl)ethyl]-5-methoxy-6-methyl-3-methylidene- 2-oxabicyclo[2.2.1]heptane ( 16 ). In the presence of Me3Al, dimethyl acetylenedicarboxylate added to 12 giving a major adduct 19 which was hydroborated and oxidized into (1RS,1′RS,2″RS,3″RS,4SR,4″RS,5 SR,6SR)-dimethyl 5-exo-hydroxy-4,6-endo-dimethyl-1-[1-(3-exo,5,5-trimeth oxy-2-endo,4-dimethyl-7-oxabicyclo[2.2.1]hept-2-yl)ethyl]-7-oxabicyclo [2.2.1]hept-2-ene-2,3-dicarboxylate ( 20 ). Acetylation of alcohol 20 followed by C?C bond cleavage afforded (1′RS,1″SR,2RS,2′″SR,3RS, 3″SR,4RS,4″SR,5RS)-dimethyl {3-acetoxy-2,3,4,5-tetrahydro-2,4-dimethyl-5-[1-(3-exo,5,5-trimethoxy ?2-endo,4-dimethyl-7-oxabicyclo[2.2.1]hept-1-yl)-ethyl]furan-2,5-diyl} bis[glyoxylate] ( 24 ).  相似文献   

14.
Selective oxidations of bis(tricarbonyliron) complexes of methyl (3,7,8-trimethylidenebicyclo[2.2.2]oct-5-en-2-ylidene)methyl ketones 15 – 17 afforded selectively the tricarbonyl {(1RS,4SR,7SR,8RS)-C,7,8,C-η-[methyl (3,7,8-trimethylidenebicyclo[2.2.2]oct-5-en-(2Z)-2-ylidene)methyl ketone]}iron ( 12 ), the corresponding (2E)-derivative 13 and the tricarbonyl{(1RS,2RS,3SR,4SR)-C,2,3,C-η-[methyl (3,7,8-trimethylidenebicyclo[2.2.2]oct-5-en-(2Z)-2-ylidene)methyl ketone]}iron ( 18 ). The stereoselectivity of the Diels-Alder reactions of the uncomplexed (Z)- and (E)-hexadienone 12 and 13 , respectively, was established. The face of the diene syn with respect to the C(5), C(6) etheno bridge was preferred for the cycloadditions of N-phenyltriazolinedione (NPTAD). In contrast, the reactions of dimethyl acetylenedicarboxylate (DMAD) and methyl propynoate showed a slight preference for addtion to the face of the hexadienones anti with respect to the etheno bridges of 12 and 13 . The crystal structure of the adduct 25 resulting from the cycloaddition of NPTAD to 12 is reported.  相似文献   

15.
[4 + 2]-Cycloaddition of hexachlorocyclopentadiene to para-substituted prop-2-yn-1-yl benzoates gave the corresponding 1,4,5,6,7,7-hexachlorobicyclo[2.2.1]hepta-2,5-dien-2-ylmethyl benzoates. The structure of the adducts was confirmed by independent synthesis, esterification of para-substituted benzoic acids with 1,4,5,6,7,7-hexachlorobicyclo[2.2.1]hepta-2,5-dien-2-ylmethanol.  相似文献   

16.
1,3-Butadienyl Thiocyanates in the Diels-Alder Reaction Followed by a [3,3]-Sigmatropic Shift (E)- and (Z)-1,3-Butadienyl thiocyanates 3 , 4 , and 12–15 have been synthesized selectively. Their use as dienes for Diels-Alder reactions followed by a [3,3]-sigmatropic shift to obtain an isomeric isothiocyanate has been studied. The butadienyl thiocyanates are, unfortunately, not very reactive in Diels-Alder reactions. This disadvantage can be overcome, if a trapping reaction with EtOH is added to the two-step sequence. This sequence allows to get good yields of the O-ethyl thiocarbamates 18–23 , even if the first two reactions have not favorable equilibrium constants.  相似文献   

17.
One-pot Diels-Alder reactions of cyclopentadiene with 3-crotonoyl- ( 2 ) and 3-acryloyl-4,4-dimethyl-1,3-oxazolidin-2-one ( 3 ), Mediated by chiral Lewis acids, are described. AlCl3, EtAlCl2, Et2AlCl, TiCl4, ZrCl4, SnCl4, SiCl4, and BBr3, modified with derivatives of D -mannitol, L -tartaric acid, and (R)-binaphthol, were applied as chiral promotors. The reaction with dienophile 2 , carried out in CH2Cl2 at ?78° with high yield, was characterized by excellent π-face selectivity. In case of the reaction with dienophile 3 , the efficiency of the chirality transfer was much lower.  相似文献   

18.
The Diels-Alder adduct (±)- 3 of 2,4-dimethylfuran and 1-cyanovinyl acetate was converted stereoselectively into benzyl 6-(4-chlorophenylsulfonyl)-1,3-exo,5-trimethyl-7-oxabicyclo[2.2.1]hept-5-en-2-exo-yl ( 26 ) and -2-endo-yl ether ( 36 ). Addition of LiAlH4 to the latter led to the 3-O-benzyl derivatives 28 and 37 of (1RS,2SR,3SR,6SR)- and (1RS,2SR,3RS,6SR)-5-(4-chlorophenylsulfonyl)-2,4,6-trimethylcyclohex-4-ene-1,3-diol, respectively. Methylenation of 6-exo-(4-chlorophenylthio)-1-methyl-5-methylidene-7-oxabicyclo[2.2.1]heptan-2-one ( 16 ), obtained by reaction of (±)- 3 with 4-Cl-C6H4SCl and saponification gave, 6-exo-(4-chlorophenylthio)-1-methyl-3,5-dimethylidene-7-oxabicyclo [2.2.1]heptan-2-one ( 43 ), the reduction of which with K-Selectride afforded 6-exo-(4-chlorophenylthio)-1,3-endo-dimethyl-5-methylidene-7-oxabicyclo[2.2.1]heptan-2-endo-ol ( 44 ). The 3-O-benzyl derivative 48 of (1RS,2RS,3RS,6SR)-5-(4-chlorophenylsulfonyl)- 2,4,6-trimethylcyclohex-4-ene-1,3-diol was derived from 44 via based-induced oxa-ring opening of benzyl 6-endo-(4-chlorophenylsulfonyl)-1,3-endo-5-endo-trimethyl-7-oxabicyclo[2.2.1]hept-2-endo-yl ether ( 49 ). Benzylation of 28 , followed by reductive desulfonylation and oxidative cleavage of the cyclohexene moiety afforded (2RS,3SR,4RS,5RS)-3,5-bis(benzyloxy)-2,4-dimethyl-6-oxoheptanal ( 32 ).  相似文献   

19.
《Tetrahedron: Asymmetry》2001,12(16):2305-2308
(±)-2-Hydroxymethylbicyclo[2.2.1]hepta-2,5-diene, (±)-2-acetoxymethylbicyclo[2.2.1]hepta-2,5-diene and their hexachlorinated derivatives were resolved via CCL- and PLE-catalysed hydrolysis to afford enantiomerically enriched products with e.e.s of 61–93%. The absolute configurations were determined by transforming 2-hydroxymethylbicyclo[2.2.1]hepta-2,5-diene into the 2-formylbicyclo[2.2.1]hepta-2,5-diene with known absolute configuration.  相似文献   

20.
A New Synthetic Route to Ubiquinones Ubiquinones 11 have been prepared employing a new strategy: as key step, the Diels-Alder reaction of 1,1,2-trichloroethene 3 with 2,5-bis[(trimethylsilyl)oxy]-3-methylfuran ( 2 ) has been used for the construction of the quinone part. After methanolysis of the [4 + 2] adducts 4a/4b , further reaction with cyclopentadiene and substitution of the Cl-atoms by MeO groups, the intermediate 7 is obtained. Diketone 7 can easily be alkylated with the desired polyprenyl side chain 9 (X = Br) using a strong base to yield, after a retro-Diels-Alder reaction, the corresponding ubiquinones 11 in high yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号