首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The kinetics and mechanism of the following reactions have been studied in the temperature range 230–360 K and at total pressure of 1 Torr of helium, using the discharge‐flow mass spectrometric method: 1a : (1a) 1b : (1b) The following Arrhenius expression for the total rate constant was obtained from the kinetics of OH consumption in excess of ClO radical, produced in the Cl + O3 reaction either in excess of Cl atoms or ozone: k1 = (6.7 ± 1.8) × 10?12 exp {(360 ± 90)/T} cm3 molecule?1 s?1 (with k1 = (2.2 ± 0.4) × 10?11 cm3 molecule?1 s?1 at T = 298 K), where uncertainties represent 95% confidence limits and include estimated systematic errors. The value of k1 is compared with those from previous studies and current recommendations. HCl was detected as a minor product of reaction (1) and the rate constant for the channel forming HCl (reaction (1b)) has been determined from the kinetics of HCl formation at T = 230–320 K: k1b = (9.7 ± 4.1) × 10?14 exp{(600 ± 120)/T} cm3 molecule?1 s?1 (with k1b = (7.3 ± 2.2) × 10?13 cm3 molecule?1 s?1 and k1b/k1 = 0.035 ± 0.010 at T = 298 K), where uncertainties represent 95% confidence limits. In addition, the measured kinetic data were used to derive the enthalpy of formation of HO2 radicals: Δ Hf,298(HO2) = 3.0 ± 0.4 kcal mol?1. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 587–599, 2001  相似文献   

2.
The kinetics of the bromate ion-iodide ion-L-ascorbic acid clock reaction was investigated as a function of temperature and pressure using stopped-flow techniques. Kinetic results were obtained for the uncatalyzed as well as for the Mo(VI) and V(V) catalyzed reactions. While molybdenum catalyzes the BrO-I? reaction, vanadium catalyzes the direct oxidation of ascorbic acid by bromate ion. The corresponding rate laws and kinetic parameters are as follows. Uncatalyzed reaction: r2 = k2[BrO] [I?][H+]2, k2 = 38.6 ± 2.0 dm9 mol?3 s?1, ΔH? = 41.3 ± 4.2 kJmol?1, ΔS? = ?75.9 ± 11.4 Jmol?1 K?1, ΔV? = ?14.2 ± 2.9 cm3 mol?1. Molybdenum-catalyzed reaction: r2 = k2[BrO] [I?] [H+]2 + kMo[BrO] [I?] [ H+]2[M0(VI)], kMo = (2.9 ± 0.3)106 dm12 mol?4 s?1, ΔH? = 27.2 ± 2.5 kJmol?1, ΔS? = ?30.1 ± 4.5 Jmol?1K?1, ΔV? = 14.2 ± 2.1 cm3 mol?1. Vanadium-catalyzed reaction: r1 = kV[BrO] [V(V)], kV = 9.1 ± 0.6 dm3 mol?1 s?1, ΔH? = 61.4 ± 5.4 kJmol?1, ΔS? = ?20.7 ± 3.1 Jmol?1K?1, ΔV? = 5.2 ± 1.5 cm3 mol?1. On the basis of the results, mechanistic details of the BrO-I? reaction and the catalytic oxidation of ascorbic acid by BrO are elaborated. © 1995 John Wiley & Sons, Inc.  相似文献   

3.
The reactions of OH radicals with 2-, 3-, 4-chlorobenzoic acids (ClBzA) and chlorobenzene (ClBz), k(OH+substrates)=(4.5?6.2)×109 dm3 mol?1 s?1, have been studied by pulse radiolysis in N2O saturated solutions. The absorption maxima of the OH-adducts were in the range of 320?340 nm. Their decay was according to a second-order reaction, 2k=(1?9)×108 dm3 mol?1 s?1. In the presence of N2O/O2 the formation of peroxyl radicals was detectable for 2-, 4-ClBzA and ClBz, k(OH-adduct+O2)=(2?4)×107 dm3 mol?1 s?1, while this reaction for 3-ClBzA was too slow to be registered. In the presence of N2O the degradation rates induced by gamma radiation were very similar for all chlorobenzoic acids, yet the chloride formation was distinctly higher for 3-ClBzA. In the presence of oxygen the initial degradation of 2-and 4-ClBzA equaled the OH-radical concentration, whereas in case of 3-ClBzA only ~60% of OH led to degradation. The order for the efficiency of dehalogenation was 4->2->3-ClBzA. Several primary radiolytic products could be detected by HPLC. To evaluate the toxicity of final products a bacterial bioluminescence test was carried out.  相似文献   

4.
The kinetics of oxidation of ethanol by cerium(IV) in presence of ruthenium(III) (in the order of 10?7 mol dm?3) in aqueous sulfuric acid media have been followed at different temperatures (25–40°C). The rate of disappearance of cerium(IV) in the title reaction increases sharply with increasing [C2H5OH] to a value independent of [C2H5OH] over a large range (0.2–1.0 mol dm?3) in which the rate law conforms to: where [Ru]T gives the total ruthenium (III) concentration. The values of 10?3kc and 10?3kd are 3.6 ± 0.1 dm3 mol?1 s?1 and 3.9 ± 0.2 s?1, respectively, at 40°C, I = 3.0 mol dm?3. The proposed mechanism involves the formation of ruthenium(III)? substrate complex which undergoes oxidation at the rate determining step by cerium(IV) to form ruthenium(IV)? substrate complex followed by the rapid red-ox decomposition giving rise to the catalyst and ethoxide radical which is oxidized by cerium(IV) rapidly. The mechanism is consistent with the existence of the complexes RuIII · (C2H5OH) and RuIII · (C2H5O?) and both are kinetically active. The overall bisulphate dependence conforms to: kobsd = A[Ru]T/{1 + C[HSO4?]} where A = 2.2 × 104 dm3 mol?1 s?1, C = 1.3 at 40°C, [H+] = 0.5 mol dm?3, and I = 3.0 mol dm?3. The observations are consistent with the Ce(SO4)2 as the kinetically active species. © 1995 John Wiley & Sons, Inc.  相似文献   

5.
Pulse radiolysis involving reactions of solvated electrons and benzophenone ketyl radicals in 1-octanol with selected compounds from bis-triazinyl pyridines and bis-triazinyl bipyridines, BT(B)P family, developed for extraction of trivalent actinides have been studied. The designated ligands were: 2,6-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-benzo-[1,2,4]triazin-3-yl)pyridine, 6,6′-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-benzo-[1,2,4-]triazin-3-yl)-[2,2′]bipyridine, 6,6′-bis(5,6-diethyl-[1,2,4]triazin-3-yl)-[2,2′]bipyridine and 6,6′-bis(5,6-dipentyl-[1,2,4]triazin-3-yl)-[2,2′]bipyridine. Reactions of the ligands with solvated electrons in 1-octanol are fast. The rate constants were determined as equal to: $ k_{{{\text{CyMe}}_{4} {\text{BTP}}}} . $  = (2.4 ± 0.2) × 109 dm3 mol?1 s?1, $ k_{{{\text{CyMe}}_{ 4} {\text{BTBP}}}} $  = (1.7 ± 0.3) × 109 dm3 mol?1 s?1, $ k_{{{\text{C}}_{ 2} {\text{BTBP}}}} $  = (1.3 ± 0.3) × 109 dm3 mol?1 s?1 and $ k_{{{\text{C}}_{ 5} {\text{BTBP}}}} $  = (1.7 ± 0.3) × 109 dm3 mol?1 s?1. Reactions of the ligands with benzophenone ketyl radicals are much slower and the measured rate constants were as follows: $ k_{{{\text{CyMe}}_{ 4} {\text{BTP}}}} $  = 6.7 × 107 dm3 mol?1 s?1 and $ k_{{{\text{CyMe}}_{ 4} {\text{BTBP}}}} $  = 3.2 × 107 dm3 mol?1 s?1.  相似文献   

6.
The rate coefficients for the reaction OH + CH3CH2CH2OH → products (k1) and OH + CH3CH(OH)CH3 → products (k2) were measured by the pulsed‐laser photolysis–laser‐induced fluorescence technique between 237 and 376 K. Arrhenius expressions for k1 and k2 are as follows: k1 = (6.2 ± 0.8) × 10?12 exp[?(10 ± 30)/T] cm3 molecule?1 s?1, with k1(298 K) = (5.90 ± 0.56) × 10?12 cm3 molecule?1 s?1, and k2 = (3.2 ± 0.3) × 10?12 exp[(150 ± 20)/T] cm3 molecule?1 s?1, with k2(298) = (5.22 ± 0.46) × 10?12 cm3 molecule?1 s?1. The quoted uncertainties are at the 95% confidence level and include estimated systematic errors. The results are compared with those from previous measurements and rate coefficient expressions for atmospheric modeling are recommended. The absorption cross sections for n‐propanol and iso‐propanol at 184.9 nm were measured to be (8.89 ± 0.44) × 10?19 and (1.90 ± 0.10) × 10?18 cm2 molecule?1, respectively. The atmospheric implications of the degradation of n‐propanol and iso‐propanol are discussed. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 42: 10–24, 2010  相似文献   

7.
A UV/visible spectrophotometric temperature-jump study of the inclusion of the rhodamine B zwitterion (RB) by β-cyclodextrin (βCD) to form a 1:1 complex (RB·βCD) in aqueous 1.00 mol dm?3 NaCl at pH 6.40 and 298.2 K yields:k 1=(1.3±0.2)×108 dm3 mol?1 s?1,k ?1=(2.2±0.5)×104 s?1, andK 1=(5.9±2.3)×103 dm3 mol?1 for the equilibrium: $${\text{RB + }}\beta {\text{CD}}{\text{RB}} \cdot \beta {\text{CD}} K_1 $$ Under the same conditions the dimerization of RB: $${\text{2}} {\text{RB}}({\text{RB}})_2 K_d $$ is characterized byK d =(1.8±1.0)×103 dm3 mol?1. The interaction of RB with αCD and γCD is weaker than with βCD, and is discussed in terms of the relative sizes of RB and the cyclodextrin annulus. Comparisons are made with the inclusions of other dyes by cyclodextrins.  相似文献   

8.
The mechanism by which an excess of iron(II) ion reacts with aqueous chlorine dioxide to produce iron(III) ion and chloride ion has been determined. The reaction proceeds via the formation of chlorite ion, which in turn reacts with additional iron(II) to produce the observed products. The first step of the process, the reduction of chlorine dioxide to chlorite ion, is fast compared to the subsequent reduction of chlorite by iron(II). The overall stoichiometry is The rate is independent of pH over the range from 3.5 to 7.5, but the reaction is assisted by the presence of acetate ion. Thus the rate law is given by At an ionic strength of 2.0 M and at 25°C, ku = (3.9 ± 0.1) × 103 L mol?1 s?1 and kc = (6 ± 1) × 104 L mol?1 s?1. The formation constant for the acetatoiron(II) complex, Kf, at an ionic strength of 2.0 M and 25°C was found to be (4.8 ± 0.8) × 10?2 L mol?1. The activation parameters for the reaction were determined and compared to those for iron(II) ion reacting directly with chlorite ion. At 0.1 M ionic strength, the activation parameters for the two reactions were found to be identical within experimental error. The values of ΔH? and ΔS? are 64 ± 3 kJ mol?1 and + 40 ± 10 J K?1 mol?1 respectively. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 554–565, 2004  相似文献   

9.
Absolute rate constants were determined for the gas phase reactions of OH radicals with a series of linear aliphatic ethers using the flash photolysis resonance fluorescence technique. Experiments were performed over the temperature range 240–440 K at total pressures (using Ar diluent gas) between 25–50 Torr. The kinetic data for dimethylether (k1), diethylether (k2), and dipropylether (k3) were used to derive the Arrhenius expressions and At 296 K, the measured rate constants (in units of 10?13 cm3 molecule?1 s?1) were: k1 = (24.9 ± 2.2), k2 = (136 ± 9), and k3 = (180 ± 22). Room temperature rate constants for the OH reactions with several other aliphatic ethers were also measured. These were (in the above units): di-n-butylether, (278 ± 36); di-n-pentylether, (347 ± 20); ethyleneoxide, (0.95 ± 0.05); propyleneoxide, (4.95 ± 0.52); and tetrahydrofuran, (178 ± 16). The results are discussed in terms of the mechanisms for these reactions and are compared to previous literature data.  相似文献   

10.
The spectroscopic and kinetic data of the short lived intermediates obtained by the attack of H-radicals on fluoro-, chloro-, bromobenzene, benzylchloride and phenethylchloride in aqueous solutions were studied by pulse radiolysis technique. The first three yield cyclohexadienylradicals (k=1–1.5×109 dm3 mol?1 s?1) with characteristic absorption maxima in the region 220–330 nm. In the case of benzylchloride a quantitative abstraction of chlorine by the H-atoms is observed (k=9.5×108 dm3 mol?1 s?1) leading to the formation of the benzylradical (λmax=257, 303, 317.5nm). The attack of H-atoms on phenethylchloride can occur on the aromatic ring forming also a cyclohexadienylradical (k=2.0×109 dm3 mol?1 s?1, λmax=317, 323nm) as well as on the side chain (k=1.5×108 dm3 mol?1 s?1) yielding H2. The intermediates decay according to a second order reaction withk=2 to 4.6×109 dm3 mol?1 s?1. To elucidate reaction mechanisms, steady state radiolysis experiments on the same systems were performed.  相似文献   

11.
The thermal decomposition of cyanogen azide (NCN3) and the subsequent collision‐induced intersystem crossing (CIISC) process of cyanonitrene (NCN) have been investigated by monitoring excited electronic state 1NCN and ground state 3NCN radicals. NCN was generated by the pyrolysis of NCN3 behind shock waves and by the photolysis of NCN3 at room temperature. Falloff rate constants of the thermal unimolecular decomposition of NCN3 in argon have been extracted from 1NCN concentration–time profiles in the temperature range 617 K <T< 927 K and at two different total densities: k(ρ ≈ 3 × 10?6 mol/cm3)/s?1=4.9 × 109 × exp (?71±14 kJ mol?1/RT) (± 30%); k(ρ ≈ 6 × 10?6 mol/cm3)/s?1=7.5 × 109 × exp (‐71±14 kJ mol?1/RT) (± 30%). In addition, high‐temperature 1NCN absorption cross sections have been determined in the temperature range 618 K <T< 1231 K and can be expressed by σ /(cm2/mol)= 1.0 × 108 ?6.3 × 104 K?1 × T (± 50%). Rate constants for the CIISC process have been measured by monitoring 3NCN in the temperature range 701 K <T< 1256 K resulting in kCIISC (ρ ≈ 1.8 ×10?6 mol/cm3)/ s?1=2.6 × 106× exp (‐36±10 kJ mol?1/RT) (± 20%), kCIISC (ρ ≈ 3.5×10?6 mol/cm3)/ s?1 = 2.0 × 106 × exp (?31±10 kJ mol?1/RT) (± 20%), kCIISC (ρ ≈ 7.0×10?6 mol/cm3)/ s?1=1.4 × 106 × exp (?25±10 kJ mol?1/RT) (± 20%). These values are in good agreement with CIISC rate constants extracted from corresponding 1NCN measurements. The observed nonlinear pressure dependences reveal a pressure saturation effect of the CIISC process. © 2012 Wiley Periodicals, Inc. Int J Chem Kinet 45: 30–40, 2013  相似文献   

12.
Abstract— The equilibrium constants, Kc, for complexation between methyl viologen dication (MV2+) and Rose Bengal, or Eosin Y, decrease with increasing ionic strength. At zero ionic strength Kc is 6500 (± 500) mol?1 dm3 for Rose Bengal and 3200 (± 200) mol?1 dm3 for Eosin Y, and these values decrease to 1500 (± 100) and 680 (± 40) mol?1 dm3, respectively, at an ionic strength of 0.1 mol dm?3. Kc is independent of pH between 4.5 and 10. ΔH is -25 (± 1) kJ mol?1 for complexation with either dye, whereas ΔS is -15 (± 3) J K?1 mol?1 for Rose Bengal, and - 23 (± 3) J K?1 mol?1 for Eosin Y. The complexation constant for Rose Bengal and the neutral viologen, 4,4'-bipyridinium-N, N'-di(propylsulphonate), (4,4'-BPS), is 420 (± 35) mol?1 dm3, and independent of ionic strength. No complexation could be observed for either Rose Bengal or Eosin with another neutral viologen, 2,2'-bipyridinium-N,N'-di(propylsulphonate), (2,2'-BPS). MV2+ quenches the triplet state of Rose Bengal with a rate constant of 7 × 109 mol?1 dm3 s?1, and this rate constant decreases slightly as ionic strength increases. The cage escape yield following quenching, Φcc is very low (Φcc= 0.02 (± 0.005), and independent of ionic strength. 4,4'-BPS quenches the triplet state of Rose Bengal with a rate constant of 2.2 (± 0.1) × 109 mol?1 dm3 s?1, and gives a cage escape yield of 0.033 (± 0.006). 2,2'-BPS quenches the Rose Bengal triplet with a rate constant of 6 (± 1) × 108 mol?1 dm3 s?1 and gives a cage escape yield of 0.07 (± 0.01). Conductivity measurements indicate that MV2+(Cl?)2 is completely dissociated at concentrations below 2 × 10?2 mol dm?3.  相似文献   

13.
Kinetics of the complex formation of chromium(III) with alanine in aqueous medium has been studied at 45, 50, and 55°C, pH 3.3–4.4, and μ = 1 M (KNO3). Under pseudo first-order conditions the observed rate constant (kobs) was found to follow the rate equation: Values of the rate parameters (kan, k, KIP, and K) were calculated. Activation parameters for anation rate constants, ΔH(kan) = 25 ± 1 kJ mol?1, ΔH(k) = 91 ± 3 kJ mol?1, and ΔS(kan) = ?244 ± 3 JK?1 mol?1, ΔS(k) = ?30 ± 10 JK?1 mol?1 are indicative of an (Ia) mechanism for kan and (Id) mechanism for k routes (‥substrate Cr(H2O) is involved in the k route whereas Cr(H2O)5OH2+ is involved in k′ route). Thermodynamic parameters for ion-pair formation constants are found to be ΔH°(KIP) = 12 ± 1 kJ mol?1, ΔH°(K) = ?13 ± 3 kJ mol?1 and ΔS°(KIP) = 47 ± 2 JK?1 mol?1, and ΔS°(K) = 20 ± 9 JK?1 mol?1.  相似文献   

14.
The kinetics of oxidation of [CrIII(Dpc)(Asp)(H2O)2] (Dpc = dipicolinic acid and Asp = DL ‐aspartic acid) by N‐bromosuccinimide (NBS) in aqueous solution have been found to obey the equation: where k2 is the rate constant for the electron transfer process, K1 is the equilibrium constant for deprotonation of [CrIII(Dpc)(Asp)(H2O)2], K2 and K3 are the pre‐equilibrium formation constants of precursor complexes [CrIII(Dpc)(Asp)(H2O)(NBS)] and [CrIII(Dpc)(Asp)(H2O)(OH)(NBS)]?. Values of k2 = 4.85 × 10?2 s?1, K1 = 1.85 × 10?7 mol dm?3, and K2 = 78.2 mol?1 dm3 have been obtained at 30°C and I = 0.1 mol dm?3. The experimental rate law is consistent with a mechanism in which the deprotonated [CrIII(Dpc)(Asp)(H2O)(OH)]? is considered to be the most reactive species compared to its conjugate acid. It is assumed that electron transfer takes place via an inner‐sphere mechanism. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 394–400, 2004  相似文献   

15.
The reductions of [Co(CN)5NO2]3−, [Co(NH3)5NO2]2+ and [Co(NH3)5ONO]2+, by TiIII in aqueous acidic solution have been studied spectrophotometrically. Kinetic studies were carried out using conventional techniques at an ionic strength of 1.0 mol dm−3 (LiCl/HCl) at 25.0 ± 0.1 °C and acid concentrations between 0.015 and 0.100 mol dm−3. The second-order rate constant is inverse—acid dependent and is described by the limiting rate law:- k2 ≈ k0 + k[H+]−1,where k=k′Ka and Ka is the hydrolytic equilibrium constant for [Ti(H2O)6]3+. Values of k0 obtained for [Co(CN)5NO2]3−, [Co(NH3)5NO2]2+ and [Co(NH3)5ONO]2+ are (1.31 ± 0.05) × 10−2 dm3 mol−1 s−1, (4.53 ± 0.08) × 10−2 dm3 mol−1 s−1 and (1.7 ± 0.08) × 10−2 dm3 mol−1 s−1 respectively, while the corresponding k′ values from reductions by TiOH2+ are 10.27 ± 0.45 dm3 mol−1 s−1, 14.99 ± 0.70 dm3 mol−1 s−1 and 17.93 ± 0.78 dm3 mol−1 s−1 respectively. Values of K a obtained for the three complexes lie in the range (1–2) × 10−3 mol dm−3 which suggest an outer-sphere mechanism.  相似文献   

16.
Rate constants for the gas phase reactions of hydroxyl radicals and chlorine atoms with a number of ethers have been determined at 300 ± 3 K and at a total pressure of 1 atmosphere. Both OH radical and chlorine atom rate constants were determined using a relative rate technique. Values for the rate constants obtained are as follows.
compound kOH×1012(cm3 molecule?1 s?1) kC1×1011(cm3 molecule?1 s?1)
Hexane 5.53 ± 1.55
2-Chloro ethyl methyl ether 4.92 ± 1.09 14.4 ± 5.0
2,2-Dichloro ethyl methyl ether 2.37 ± 0.50 4.4 ± 1.6
2-Bromo ethyl methyl ether 6.94 ± 1.38 16.3 ± 5.4
2-Chloro,1,1,1-trifluoro ethyl ethyl ether <0.3 0.30 ± 0.10
Isoflurane <0.3 <0.1
Enflurane <0.3 <0.1
Di-i-propyl ether 11.08 ± 2.26 16.3 ± 5.4
Diethyl ether 25.8 ± 4.4
The above relative rate constants are based on the values of k(OH + pentane)=[3.94 ± 0.98]×10?12 and k(OH + diethyl ether)=[13.6 ± 2.26] × 10?12 cm3 molecule?1 s?1 in the case of the hydroxyl reactions. In the case of the chlorine atom reactions, the above rate constants are based on values of k(Cl + ethane)=[5.84 ± 0.88] × 10?11 and k(Cl + diethyl ether)=[25.4 ± 8.05] × 10?11 cm3 molecule?1 s?1. The quoted errors include ±2σ from a least squares analysis of our slopes plus the uncertainty associated with the reference rate constants. Atmospheric lifetimes calculated with respect to reaction with OH radicals are based on a tropospheric OH radical concentration of (7.7 ± 1.4) × 105 radicals cm?3, and lifetimes with respect to reaction with Cl atoms are based on a tropospheric Cl atom concentration of 1 × 103 atoms cm?3. Observed trends in the relative rates of reaction of hydroxyl radicals and chlorine atoms with the ethers studied is discussed. The significance of the calculated tropospheric lifetimes is also reviewed. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
Absolute rate constants for the gas phase reaction of OH radicals with pyrrole (k1) and thiophene (k2) have been measured over the temperature ranges 298–440 and 274–382 K, respectively, using the flash photolysis-resonance fluorescence technique. The rate constants obtained were independent of the total pressure of argon diluent over the range 25–100 torr andwere fit by the Arrhenius expressions and with rate constants at 298 ± 2 K of k1 = (1.03 ± 0.06) × 10?10 cm3 molecule?1 s?1 and k2 = (8.9 ± 0.7) × 10?12 cm3 molecule?1 s?1. [These errors represent two standard deviations (systematic errors could constitute an additional ca. 10% uncertainty)]. These results are discussed with respect to the previous literature data and the atmospheric lifetimes of pyrrole and thiophene.  相似文献   

18.
Radiation chemical reactions ofOH, O•−, N3 and e aq t- witho- and m-hydroxycinnamic acids were studied. The second-orderrateconstantsforthereaction ofOH with ortho and meta isomers in buffer solution at pH7 are 3.9±0.2 × 109 and 4.4 ± 0.3 × 109 dm3 mol-1 s-1 respectively. At pH 3 the rate with the ortho isomer was halved (1.6 ± 0.4 × 109 dm3 mol-1 s-1) but it was unaffected in the case of meta isomer (k = 4.2±0.6 × 109dm3mol-1 s-1). The rate constant in the reaction of N3 with the ortho isomer is lower by an order of magnitude (k = 4.9 ± 0.4 × 108 dm3 mol-1s-1). The rates of the reaction of e aq t- with ortho and meta isomers were found to be diffusion controlled. The transient absorption spectrum measured in theOH witho-hydroxycinnamic acid exhibited an absorption maximum at 360 nm and in meta isomer the spectrum was blue-shifted (330 nm) with a shoulder at 390 nm. A peak at 420 nm was observed in the reaction of Obb−with theo-isomer whereas the meta isomer has a maximum at 390 and a broad shoulder at 450 nm. In the reaction of the absorption peaks were centred at 370–380 nm in both the isomers. The underlying reaction mechanism is discussed.  相似文献   

19.
The kinetics of the reactions of hydroxy radicals with cyclopropane and cyclobutane has been investigated in the temperature range of 298–492 K with laser flash photolysis/resonance fluorescence technique. The temperature dependence of the rate constants is given by k1 = (1.17 ± 0.15) × 10?16 T3/2 exp[?(1037 ± 87) kcal mol?1/RT] cm3 molecule?1 s1 and k2 = (5.06 ± 0.57) × 10?16 T3/2 exp[?(228 ± 78) kcal mol?1/RT] cm3 molecule?1 s?1 for the reactions OH + cyclopropane → products (1) and OH + cyclobutane → products (2), respectively. Kinetic data available for OH + cycloalkane reactions were analyzed in terms of structure-reactivity correlations involving kinetic and energetic parameters.  相似文献   

20.
Absolute rate coefficients for the reactions of the hydroxyl radical with dimethyl ether (k1) and diethyl ether (k2) were measured over the temperature range 295–442 K. The rate coefficient data, in the units cm3 molecule?1 s?1, were fitted to the Arrhenius equations k1 (T) = (1.04 ± 0.10) × 10?11 exp[?(739 ± 67 cal mol?1)/RT] and k2(T) = (9.13 ± 0.35) × 10?12 exp[+(228 ± 27 kcal mol?1)/RT], respectively, in which the stated error limits are 2σ values. Our results are compared with those of previous studies of hydrogen-atom abstraction from saturated hydrocarbons by OH. Correlations between measured reaction-rate coefficients and C? H bond-dissociation energies are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号