首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 56 毫秒
1.
Pulse radiolysis was used to study the kinetics of the reactions of CH3C(O)CH2O2 radicals with NO and NO2 at 295 K. By monitoring the rate of formation and decay of NO2 using its absorption at 400 and 450 nm the rate constants k(CH3C(O)CH2O2+NO)=(8±2)×10−12 and k(CH3C(O)CH2O2+NO2)=(6.4±0.6)×10−12 cm3 molecule−1 s−1 were determined. Long path length Fourier transform infrared spectrometers were used to investigate the IR spectrum and thermal stability of the peroxynitrate, CH3C(O)CH2O2NO2. A value of k−6≈3 s−1 was determined for the rate of thermal decomposition of CH3C(O)CH2O2NO2 in 700 torr total pressure of O2 diluent at 295 K. When combined with lower temperature studies (250–275 K) a decomposition rate of k−6=1.9×1016 exp (−10830/T) s−1 is determined. Density functional theory was used to calculate the IR spectrum of CH3C(O)CH2O2NO2. Finally, the rate constants for reactions of the CH3C(O)CH2 radical with NO and NO2 were determined to be k(CH3C(O)CH2+NO)=(2.6±0.3)×10−11 and k(CH3C(O)CH2+NO2)=(1.6±0.4)×10−11 cm3 molecule−1 s−1. The results are discussed in the context of the atmospheric chemistry of acetone and the long range atmospheric transport of NOx. © John Wiley & Sons, Inc. Int J Chem Kinet: 30: 475–489, 1998  相似文献   

2.
Using a pulse-radiolysis transient UV–VIS absorption system, rate constants for the reactions of F atoms with CH3CHO (1) and CH3CO radicals with O2 (2) and NO (3) at 295 K and 1000 mbar total pressure of SF6 was determined to be k1=(1.4±0.2)×10−10, k2=(4.4±0.7)×10−12, and k3=(2.4±0.7)×10−11 cm3 molecule−1 s−1. By monitoring the formation of CH3C(O)O2 radicals (λ>250nm) and NO2 (λ=400.5nm) following radiolysis of SF6/CH3CHO/O2 and SF6/CH3CHO/O2/NO mixtures, respectively, it was deduced that reaction of F atoms with CH3CHO gives (65±9)% CH3CO and (35±9)% HC(O)CH2 radicals. Finally, the data obtained here suggest that decomposition of HC(O)CH2O radicals via C C bond scission occurs at a rate of <4.7×105 s−1. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 913–921, 1998  相似文献   

3.
Rate coefficients for the reactions of CH3 + Br2 (k2), CH3CO + Br2 (k3), and Cl + Br2 (k5) were measured using the laser‐pulsed photolysis method combined with detection of the product Br atoms using resonance fluorescence. For the reactions involving organic radicals, the rate coefficients were observed to increase with decreasing temperature and within the temperature range explored, were adequately described by Arrhenius‐like expressions: k2 (224–358 K) = 1.83 × 10?11 exp(252/T) and k3 (228–298 K) = 2.92 × 10?11 exp(361/T) cm3 molecule?1 s?1. The total, temperature‐independent uncertainty for each reaction (including possible systematic errors in Br2 concentration measurement) was estimated as ~7% for k2 and 10% for k3. Accurate data on k5 was obtained at 298 K, with a value of 1.88 × 10?10 cm3 molecule?1 s?1 obtained (with an associated error of 6%). A limited data set at 228 K suggests that k5 is, within experimental uncertainty, independent of temperature. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 575–585, 2010  相似文献   

4.
The gas‐phase kinetics of CHBr2 + NO2 and CH3CHBr + NO2 reactions have been studied in direct time resolved measurements using a tubular flow reactor coupled to a photoionization mass spectrometer. The radicals were generated by pulsed laser photolysis of bromoform and 1,1‐dibromoethane at 248 nm. The subsequent decays of the radical concentrations were monitored as a function of [NO2] under pseudo–first‐order conditions. The rate coefficients of both reactions are independent of bath gas (He) pressure and display negative temperature dependence under the conditions of 2–6 Torr pressure (He) and 250–480 K. The obtained bimolecular rate coefficients are k(CHBr2 + NO2) = (9.8 ± 0.4) × 10?12 (T/300 K)?1.65 ± 0.18 cm3 s?1 (288–483 K) and k(CH3CHBr + NO2) = (2.27 ± 0.06) × 10?11 (T/300 K)?1.28 ± 0.11 cm3 s?1 (250–483 K), with the uncertainties given as one standard error. Estimated overall uncertainties in the measured bimolecular reaction rate coefficients are ±25%. The reaction products identified were CBr2O for the CHBr2 + NO2 reaction and CHBrO and CH3CHO with minor amounts of CH3 for the CH3CHBr + NO2 reaction, respectively. © 2012 Wiley Periodicals, Inc. Int J Chem Kinet 44: 767–777, 2012  相似文献   

5.
The kinetics of the gas-phase reactions of the OH radical with (C2H5O)3PO and (CH3O)2P(S)Cl and of the reactions of NO3 radicals and O3 with (CH3O)2P(S)Cl have been studied at room temperature. Using a relative rate technique, the rate constants determined for the reactions of the OH radical with (C2H5O)3PO and (CH3O)2P(S)Cl at 296 ± 2 K and 740 torr total pressure of air were (5.53 ± 0.35) × 10?11 and (5.96 ± 0.38) × 10?11 cm3 molecule?1 s?1, respectively. Upper limits to the rate constants for the NO3 radical and O3 reactions with (CH3O)2P(S)Cl of <3 × 10?14 cm3 molecule?1 s?1 and <2 × 10?19 cm3 molecule?1 s?1, respectively, were obtained. These data are compared and discussed with previous literature data for organophosphorus compounds.  相似文献   

6.
The fast flow method with laser induced fluorescence detection of CH3C(O)CH2 was employed to obtain the rate constant of k1 (298 K) = (1.83 ± 0.12 (1σ)) × 1010 cm3 mol?1 s?1 for the reaction CH3C(O)CH2 + HBr ? CH3C(O)CH3 + Br (1, ?1). The observed reduced reactivity compared with n‐alkyl or alkoxyl radicals can be attributed to the partial resonance stabilization of the acetonyl radical. An application of k1 in a third law estimation provides ΔfH(CH3C(O)CH2) values of ?24 kJ mol?1 and ?28 kJ mol?1 depending on the rate constants available for reaction ( ‐1 ) from the literature. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 38: 32–37, 2006  相似文献   

7.
The gas phase reaction of the hydroxyl radical with the unsaturated peroxyacyl nitrate CH2 ? C(CH3)C(O)OONO2 (MPAN) has been studied at 298 ± 2 K and atmospheric pressure. The OH-MPAN reaction rate constant relative to that of OH + n-butyl nitrate is 2.08 ± 0.25. This ratio, together with a literature rate constant of 1.74 × 10?12 cm3 molecule?1 s?1 for the OH + n-butyl nitrate reaction at 298 K, yields a rate constant of (3.6 ± 0.4)× 10?12 cm3 molecule?1 s?1 for the OH-MPAN reaction at 298 ± 2 K. Hydroxyacetone and formaldehyde are the major carbonyl products. The yield of hydroxyacetone, 0.59 ± 0.12, is consistent with preferential addition of OH at the unsubstituted carbon atom. Atmospheric persistence and removal processes for MPAN are briefly discussed. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
Pulse radiolysis techniques were used to measure the gas phase UV absorption spectra of the title peroxy radicals over the range 215–340 nm. By scaling to σ(CH3O2)240 nm = (4.24 ± 0.27) × 10?18, the following absorption cross sections were determined: σ(HO2)240 nm = 1.29 ± 0.16, σ(C2H5O2)240 nm = 4.71 ± 0.45, σ(CH3C(O)CH2O2)240 nm = 2.03 ± 0.22, σ(CH3C(O)CH2O2)230 nm = 2.94 ± 0.29, and σ(CH3C(O)CH2O2)310 nm = 1.31 ± 0.15 (base e, units of 10?18 cm2 molecule?1). To support the UV measurements, FTIR‐smog chamber techniques were employed to investigate the reaction of F and Cl atoms with acetone. The F atom reaction proceeds via two channels: the major channel (92% ± 3%) gives CH3C(O)CH2 radicals and HF, while the minor channel (8% ± 1%) gives CH3 radicals and CH3C(O)F. The majority (>97%) of the Cl atom reaction proceeds via H atom abstraction to give CH3C(O)CH2 radicals. The results are discussed with respect to the literature data concerning the UV absorption spectra of CH3C(O)CH2O2 and other peroxy radicals. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 283–291, 2002  相似文献   

9.
A discharge flow reactor coupled to a laser-induced fluorescence (LIF) detector and a mass spectrometer was used to study the kinetics of the reactions CH3O+Br→products (1) and CH3O+BrO→products (2). From the kinetic analysis of CH3O by LIF in the presence of an excess of Br or BrO, the following rate constants were obtained at 298 K: k1=(7.0±0.4)×10−11 cm3 molecule−1 s−1 and k2=(3.8±0.4)×10−11 cm3 molecule−1 s−1. The data obtained are useful for the interpretation of other laboratory studies of the reactions of CH3O2 with Br and BrO. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 249–255, 1998.  相似文献   

10.
The recombination reaction O + O2 → O3 was studied by laser flash photolysis of pure O2 in the pressure range 3–20 atm, and of N2O? O2 mixtures in the bath gases Ar, N2, (CO2, and SF6) in the pressure range 3–200 atm. Fall-off curves of the reaction have been derived. Low-pressure rate coefficients were found to agree well with literature data. A high-pressure rate coefficient of k = (2.8 ± 1.0) × 10?12 cm3 molecule?1 s?1 was obtained by extrapolation.  相似文献   

11.
Measurements of the rate coefficient of the reaction (O3P) + NO2 → O2 + NO have been made at 296°K and 240°K, using the technique of NO2* chemiluminescent decay. Values of 9.3 × 10?12 cm3 molec?1 sec?1 at 296°K and 10.5 × 10?12 cm3 molec?1 sec?1 at 240°K were obtained, in excellent agreement with the recent results of Davis, Herron, and Huie [1]. The earlier lower values may have resulted from loss of NO2 on surfaces.  相似文献   

12.
The rate coefficients for the reactions of Cl atoms with CH3Br, (k1) and CH2Br2, (k2) were measured as functions of temperature by generating Cl atoms via 308 nm laser photolysis of Cl2 and measuring their temporal profiles via resonance fluorescence detection. The measured rate coefficients were: k1 = (1.55 ± 0.18) × 10?11 exp{(?1070 ± 50)/T} and k2 = (6.37 ± 0.55) × 10?12 exp{(?810 ± 50)/T} cm3 molecule?1 s?1. The possible interference of the reaction of CH2Br product with Cl2 in the measurement of k1 was assessed from the temporal profiles of Cl at high concentrations of Cl2 at 298 K. The rate coefficient at 298 K for the CH2Br + Cl2 reaction was derived to be (5.36 ± 0.56) × 10?13 cm3 molecule?1 s?1. Based on the values of k1 and k2, it is deduced that global atmospheric lifetimes for CH3Br and CH2Br2 are unlikely to be affected by loss via reaction with Cl atoms. In the marine boundary layer, the loss via reaction (1) may be significant if the Cl concentrations are high. If found to be true, the contribution from oceans to the overall CH3Br budget may be less than what is currently assumed. © 1994 John Wiley & Sons, Inc.  相似文献   

13.
The kinetics and mechanism of Cl-atom initiated reactions of CH3C(O)CHO were studied using the FTIR detection method in the photolysis (λ < 300 nm) of Cl2? CH3C(O)CHO mixtures in 700 torr of N2? O2 diluent at 298 ± 2 K. The observed product distribution over the O2 pressure range from 0–700 torr, combined with relative rate measurements, provided evidence that: (1) the primary step is Cl + CH3C(O)CHO → HCl + CH3C(O)CO with a rate constant of (4.8 ± 1.1) × 10?11 cm3 molecule?1 s?1; and (2) the predominant fate of the primary radical CH3C(O)CO under atmospheric conditions is unimolecular dissociation to CH3C(O) radicals and CO, rather than O2-addition to yield the corresponding carbonylperoxy radical CH3C(O)C(O)OO.  相似文献   

14.
The bimolecular reactions in the title were measured behind shock waves by monitoring the O-atom production in COS? O2? Ar and CS2? O2? Ar mixtures over the temperature range between 1400 and 2200 K. A value of the rate constant for S + O2 → SO + O was evaluated to be (3.8 ± 0.7) × 1012 cm3 mol?1 s?1 between 1900 and 2200 K. This was connected with the data at lower temperatures to give an expression k2 = 1010.85 T0.52 cm3 mol?1 s?1 between 250 and 2200 K. An expression of the rate constant for CS2 + O2 → CS + SO2 was obtained to be k21 = 1012.0 exp(?32 kcal mol?1/RT) cm3 mol?1 s?1 with an error factor of 2 between 1500 and 2100 K.  相似文献   

15.
The kinetics of C2H5O2 and C2H5O2 radicals with NO have been studied at 298 K using the discharge flow technique coupled to laser induced fluorescence (LIF) and mass spectrometry analysis. The temporal profiles of C2H5O were monitored by LIF. The rate constant for C2H5O + NO → Products (2), measured in the presence of helium, has been found to be pressure dependent: k2 = (1.25±0.04) × 10?11, (1.66±0.06) × 10?11, (1.81±0.06) × 10?11 at P (He) = 0.55, 1 and 2 torr, respectively (units are cm3 molecule?1 s?1). The Lindemann-Hinshelwood analysis of these rate constant data and previous high pressure measurements indicates competition between association and disproportionation channels: C2H5O + NO + M → C2H5ONO + M (2a), C2H5O + NO → CH3CHO + HNO (2b). The following calculated average values were obtained for the low and high pressure limits of k2a and for k2b : k = (2.6±1.0) × 10?28 cm6 molecule?2 s?1, k = (3.1±0.8) × 10?11 cm3 molecule?1 s?1 and k2b ca. 8 × 10?12 cm3 molecule?1 s?1. The present value of k, obtained with He as the third body, is significantly lower than the value (2.0±1.0) × 10?27 cm6 molecule?2 s?1 recommended in air. The rate constant for the reaction C2H5O2 + NO → C2H5O + NO2 (3) has been measured at 1 torr of He from the simulation of experimental C2H5O profiles. The value obtained for k3 = (8.2±1.6) × 10?12 cm3 molecule?1 s?1 is in good agreement with previous studies using complementary methods. © 1995 John Wiley & Sons, Inc.  相似文献   

16.
The molecular modulation spectroscopic technique was employed to study the kinetics of NO3 radicals produced in the 253.7 nm photolysis of flowing gas mixtures of HNO3/CH4/O2 at room temperature. By computer fitting of the NO3 temporal behavior, a rate coefficient of (2.3 ± 0.7) × 10?12 cm3 molecule?1 s?1 was obtained for the reaction between NO3 and CH3O2 at 298 K.  相似文献   

17.
The room temperature rate coefficient for the reaction Br+Br2O→Br2+BrO (3) has been measured using the technique of pulse-laser photolysis with long-path transient absorption detection of the BrO reaction product. A value of k3=(2.0±0.5)×10−10 cm3 molecule−1 s−1 was determined. The photolysis products of Br2O at 308 nm were also examined. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 571–576, 1998  相似文献   

18.
Methylperoxy radicals were generated by the flash photolysis of azomethane–oxygen mixtures. The observed broadband spectrum of the CH3O2 radical is similar, but not identical to those reported previously. The CH3O2 decay followed second-order kinetics at high CH3O2 concentrations with k4' = (2.5 ± 0.3) × 108 liter/mol·sec (23 ± 2°C); 2CH3O2 → products (4). Because of the potential loss of CH3O2 through the reactions with HO2 and CH3O radicals subsequently formed in this system, simulations suggest that the true k4 is in the range: 2.5 × 108k4 ≥ 2.3 × 108 liter/mol·sec. Deviations from linearity of the plot of the reciprocal of the CH3O2 absorbance versus time were seen at long times and were attributed to the reaction (5) with an apparent rate constant k5' ? (1.6 ± 0.4) × 105 liter/mol·sec; CH3O2 + Me2N2 → product (5). The CH3O2–SO2 reaction, CH3O2 + SO2 → products (16), was studied by observing CH3O2 decay in flashed mixtures of Me2N2, O2, and SO2. The results gave the apparent second-order rate constant k16' ? (6.4 ± 1.4) × 106 liter/mol·sec. It appears likely that each occurrence of reaction (5) and (16) is followed by the loss of an additional CH3O2 radical and that k5 ? k5'/2 and k16 ? k16'/2. Our findings suggest that a significant fraction of the SO2 oxidation in a sunlight-irradiated NOx?RH-polluted atmosphere, may occur by reaction with CH3O2 as well as from the HO and HO2 reactions.  相似文献   

19.
The title compounds are diastereoisomers with antipodean axial chirality. The M isomer crystallizes as a (1/3) acetone solvate, C32H30NO+·Br?·3C3H6O, while the P isomer crystallizes as a (1/1) di­chloro­methane solvate, C32H30NO+·Br?·CH2Cl2. In each structure, O—H?Br hydrogen bonds link the cations and anions to give ion pairs. The seven‐membered azepinium ring adopts the usual twisted‐boat conformation and its ring strain causes a slight curvature of the plane of each naphthyl ring.  相似文献   

20.
The kinetics of the reactions CH3O + Cl → H2CO + HCl (1) and CH3O + ClO → H2CO + HOCl (2) have been studied using the discharge-flow techniques. CH3O was monitored by laser-induced fluorescence, whereas mass spectrometry was used for the detection or titration of other species. The rate constants obtained at 298 K are: k1 = (1.9 ± 0.4) × 10−11 cm3 molecule−1 s−1 and k2 = (2.3 ± 0.3) × 10−11 cm3 molecule−1 s−1. These data are useful to interpret the results of the studies of the reactions of CH3O2 with Cl and ClO which, at least partly, produce CH3O radicals. © 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号