首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
The microwave spectrum of N2D4 has been observed and analyzed. Based on five low-J rotational transitions the effective rotational constants are: A = 74712.9 ± 1.9 MHz, B = 18500.42 ± 0.46 MHz, and C = 18439.91 ± 0.46 MHz. The quadrupole coupling constants of the 14N nuclei are Xaa = 4.23 ± 0.04 MHz, Xbb = 1.98 ± 0.05 MHz, and Xcc = ?2.25 ± 0.05 MHz. Using the observed ground state inversion splittings for N2D4 and N2H4 the barrier to inversion of a single amino group is computed to be 5.00 kcal mol?1.  相似文献   

2.
The microwave spectrum of chloroperoxytrifluoromethane has been recorded from 12.5 to 40.0 GHz. Only a-type transitions were observed. The R-branch assignments have been made for both the CF3OO35C1 and CF3OO37Cl species for the ground vibrational state. The rotational constants are: A=4808± 12, B=1318.55±0.02, C=1278.28±0.02 MHz for the 35CI species, and A=4748±300,B=1285.28±0.96, C=1246.80±0.96 MHz for the 37Cl species. From a diagnostic least-squares adjustment to fit the six rotational constants the following structural parameters were obtained: r(C-0)=1.377±0.03 Å, r(O-O)=1.445± 0.049 Å, r(Cl-O)=1.69±0.04 Å, ∠COO=108.1±4.2°, ∠ClOOC=99.5±2.0°, and ∠tilt = 6.0±0.9° with reasonable assumptions for the three other structural parameters. The relatively large uncertainty in these structural parameters results from the large uncertainty in the A rotational constants. These parameters are compared to the corresponding ones in some other peroxides. The quadrupole coupling constants have been obtained and are discussed.  相似文献   

3.
The rotational spectra of the molecules (13CH2O)(12CH2O)2 and (CH218O) (CH216O)2 have been investigated in the region 30–290 GHz. The rotational constants determined are (MHz):A = 5271.106±0.007, B = 5176.405 ±0.007, C = 2904.376±0.34 for the former, andA = 5267.34±0.3, B = 508I.106±0.3, C = 2872.378± 10 for the latter molecule.The parameter C of the parent molecule (CH2O)3 has been determined: 2933.95 ±0.34 MHz. With the value A = B = 5273.258 ±0.002 for the parent molecule the following structural parameters were determined: r(C-O) = 1.4205± 0.005 Å, ∠COC = 109.5±0.5°, ∠OCO = 112±0.5°.  相似文献   

4.
Preliminary ab initio calculations for the BH+2 potential surface are presented. The reaction B+1S) + H2 → BH+ (B2 (B2σ+) + H is shown to be most likely to occur for C2v and near C2v geometrics where there are avoided crossings between the 1 1A1 and 2 1A1 surfaces and between the 2 1A1 and 3 1A1 surfaces which should facilitate non-adiabatic transitions. Bent geometries are alos preferred for the reaction B+(1S) + H2 → BH+(A2π) + H for which there are avoided crossings in C2 sysmmetry between surfaces correlating with 1 1A1 and 1 1B2 surfaces.  相似文献   

5.
The microwave spectrum of dichloroborane has been observed and the rotational constants of four isotopic species are determined as follows: A = 46911.09(7), B = 3185.937(10) and C = 2980.425(14) MHz for the normal species, A = 46747.14(8), B = 3099.543(14) and C = 2904.037(14)MHz for BHCl37Cl, A = 49302.05(24), B = 3185.536(32) and C = 2989.368(51) MHz for 10BHCl2 and A = 35153.18(9), B = 3186.026(15) and C = 2918.233(11) MHz for BDCl2. The following complete rs structure was determined: rs(BH) = 1.184(2) Å, rs(BCl) = 1.735(2) Å and ∠ ClBCl = 120.4(2)°. The hyperfine structure due to the two chlorine and one boron nuclei has been analysed.  相似文献   

6.
Experimental differential cross sections for 40 keV electrons scattered by C2H2, C2H4 and C2H6 molecules were measured using the gas electron diffraction method in the range of the scattering variable s from s = 1 A?1 to s = 30 A?1. The differential cross sections for neon were also measured and compared with calculated differential cross sections to calibrate the diffractograph. Experimental differential cross sections show significant deviations with respect to theoretical differential cross sections calculated from the Debye-Ehrenfest model, mainly in the range of small scattering angles. The observed differences are connected to chemical binding effects. From the experimental data, an estimation of the binding energy was carried out. The deduced values: ?0.58 ± 0.20 au for C2H2, ?0.94 ± 0.30 au for C2H4 and ?1.23 ± 0.40 au for C2H6 are in agreement with those obtained by thermochemical methods.  相似文献   

7.
By measuring the relative CO quantum yields from ketene photolysis as a function of photolysis wavelength we have determined the threshold energy at 25° for CH2CO(1A1) → CH2(3B1) + CO(1Σ+) to be 75.7 ± 1.0 kcal/mole. This corresponds to a value of 90.7 ± 1.0 kcal/mole for ΔHf2980[CH2(3B1)]. By measuring the relative ratio of CH2(1A1)/CH2(3B1) from ketene photolysis as a function of photolysis wavelength we have determined the threshold energy at 25°C for CH2CO(1A1) → CH2(1A1) + CO(1Σ+) to be 84.0 ± 0.6 kcal/mole. This corresponds to a value of 99.0 ± 0.6 kcal/mole for ΔHf2980[CH2(1A1)]. Thus a value for the CH2(3B1) ? CH2(1A1) energy splitting of 8.3 ± 1 kcal/mole is determined, which agrees with three other recent independent experimental estimates and the most recent quantum theoretical calculations.  相似文献   

8.
Photoelectron spectra of the vinylidene anion (C2H2?) show vibrational structure in X1A1 vinylidene up 12 kcal/ mol above the vibrational ground state. Analysis yields an EA(C2H2X1 A1) of 0.47 ± 0.02 eV, and frequencies for the CC stretch and HCH bend. Absence of the 3B2 state in the photoelectron spectra indicates the 1A1-3B2 splitting in vinylidene is ? 1.7 eV.  相似文献   

9.
Microwave spectrum of 2-methyl-1,3-dioxane has been investigated in the frequency range 8–40 GHz. Rotational a-type and c-type transitions with J≤40 have been identified. Rotational constants A = 4658.122(2) MHz, B = 2503.221(1) MHz, C = 1783.950(1) MHz and centrifugal distortion constants for the ground vibrational state have been found. Dipole moment components μa = 1.43 ± 0.01 D, μc = 1.15±0.01 D and overall dipole moment μ = 1.84±0.02 D have been determined. The data obtained are in accord with the chair conformation of the molecule having equatorial arrangement of the methyl group. Original Russian Text Copyright ? 2006 by A. Kh. Mamleev, R. V. Galeev, L. N. Gunderova, M. G. Faizullin, and A. A. Shapkin __________ Translated from Zhurnal Strukturnoi Khimii, Vol. 47, No.2, pp. 373–375, March–April, 2006.  相似文献   

10.
The photodissociation of ketene, CH2CO(X?1A1) → CH21A1) + CO(X 1Σ+) has been observed at 337 nm, using a pulsed nitrogen laser. The CH21A1) radical has been detected by laser induced fluorescence with a tunable dye laser. A laser excitation spectrum has been obtained from CH21A1) over the wavelength interval from 588.9 to 595.6 nm in the Σ ← Π vibronic subband of the CH21A1); υ″ = 0, 0, 0?b? 1B1; υ′ = 0, 14, 0) transition. For the CH21A1 ; υ′= 0, 0, 0?X? 3B1; υ′' = 0, 0, 0) energy separation an upper limit of (6.3 ± 0.8) kcal/mole has been found. The radiative lifetime τ and the rate constant k for the removal of the 000 rotational level of the Σ(0, 14, 0) vibronic state have been measured directly. The values are τ = (4.2 ± 0.2) μs and k = (7.4 ± 0.3) × 10?10 cm3 molecule?1 s?1, respectively.  相似文献   

11.
Microwave spectra of isotopic species α-13C and β-13C of tetrahydroselenophene molecules have been investigated and rotational constants determined: A = 5608.98 Mc, B = 2819.532 Mc, C = 2022.624 Mc forα-13C isotopic species and A = 5695.94 Mc, B = 2770.714 Mc, C = 2009.166 Mc for β-13C isotopic species. The rs-ring structure was found to be Se-C2 = 1.963 Å, C2-C3 = 1.549 Å, C3-C4 = 1.527 Å, ∠C5SeC2 = 90° 44', ∠SeC2C3 = 104° 58', ∠C2C3C4 = 106° 52', the angle of twist = 29° 44'.  相似文献   

12.
13.
The microwave spectrum of 3-nitrothiophene has been studied in the frequency region 26.5–40.0 GHz. The rotational transitions of the ground state and the first six torsionally excited states have been assigned. The ground state rotational constants have been determined to be Ao=4622.61 ± 0.07 MHz, Bo = 1231.751 ± 0.001 MHz and Co = 973.062 ± 0.001 MHz. The planarity of the molecule has been demonstrated. The first torsional frequency and the barrier to internal rotation of the nitro group have been estimated as 60 cm?1 and 3.8 kcal/mole, respectively.  相似文献   

14.
Fluorescence of NO2 excited by HeCd 442 nm laser radiation is found to exhibit a spectrum characteristic of perpendicular transitions from several levels belonging to 2B1 (K′ ? 0) vibronic states. The lifetime of a level K′ = 4, N′ = 16 ± 1 is 36 μs, substantially greater than lifetimes given previously for K′ = 0 levels of the 2B1 state. This result supports the mechanism of lifetime lengthening by the Renner interaction of the 2B1 and 2A1 components of the linear 2Πu state.  相似文献   

15.
The microwave spectrum of 1-chloro-2-methyl propane has been recorded and lines assigned to 35Cl and 37Cl species in the unsymmetrical conformation. The rotational and distortion constants in MHz are: C4H935Cl, A = 7527.05, B = 2146.21, C = 1793.59, ΔJK = 4.15 × 10?3, δj = ?8.0 × 10?5; C4H937Cl, A = 7524.40. B = 2091.73, C = 1755.54, ΔJK = 2.5 × 10?3, δj = 2.0 × 10?4.  相似文献   

16.
The microwave spectrum of 2-chloroacrylonitrile has been studied in the 26.5–40 GHz region. A total of 99 a- and b-type rotational transitions have been measured and assigned for CH2 =C35Cl(CN),yielding values for the rotational constants (in MHz): A = 6973.27, B = 3148.16, C = 2165.95. For CH2=C37Cl(CN) a total of 53 transitions have been measured and assigned and the rotational constants obtained are (in MHz): A = 6909.35, B = 3081.17, C = 2127.98. The distortion effects have also been studied and the quartic distortion constants have been evaluated. From the observed hyperfine structure, the chlorine nuclear quadrupole coupling constants have been obtained. The structure of vinyl cyanide and vinyl chloride can be transferred to account remarkably well for the observed rotational constants.  相似文献   

17.
Single crystal susceptibilities of Er(C2O4) (C2O4H)·3H2O are reported over the 1.5–20 K interval, and EPR spectra at 4.2 K of Y (C2O4) (C2O4H·3H2O doped with Er3+ are also reported. The susceptibilities follow the CurieWeiss law, with g| = 12.97 ± 0.05, g = 2.98 ± 0.05, θ| = ?0.25 ± 0.05 K, and θ = ?0.12 ± 0.05 K.  相似文献   

18.
Pentafluoropyridine has been analysed in the frequency range of 8 to 18 GHz at dry ice temperature, using a conventional 100 kHz Stark modulated microwave spectrometer. The rotational constants and centrifugal distortion constants are A = 1481.539 ± 0.003 MHz, B = 1075.348 ± 0.004 MHz and C = 623.101 ± 0.001 MHz; and dJ = ?0.39 ± 0.06 kHz, dJK = 1.86 ± 0.27 kHz, dK = 0.70 ± 0.1 kHz, dEJ = (0.3 ± 0.03) × 10?6 and dEK = (?1.5 ± 0.2) × 10?6. The electric dipole moment has been found to be 0.98 ± 0.08 D and the values of the quadrupole coupling constants are xaa = 1.94 ± 0.22 MHz, xbb = ?4.08 ± 0.06 MHz and xcc = 2.14 ± 0.22 MHz. A simple analysis based on Townes and Dailey theory points to a considerable increase in the π-electron density and excess charge on the nitrogen site.  相似文献   

19.
The rate constant for the reaction NH3 + OH → NH2 + H2O was determined by the comparison of the calculated induction period data with experiments by the shock tube technique in the range 1360–1840 K, for NH3-H2-O2-Ar mixtures. The rate constants can be represented by the expression k = 1012.49±0.04exp[(?1.95±0.15) kcal/,RT] cm3 mol?1 s?1.  相似文献   

20.
The rate constants for the reactions OH(X2Π, ν = O) + NH3k1 H2O + NH2 and OH(X2Π, ν = O) + O3k2 → HO2 + O2 were measured at 298°K by the flash photolysis resonance fluorescence technique. The values of the rate constants thus obtained are K1 = (4.1 ± 0.6) × 10?14 and k2 = (6.5 ± 1.0) × 10?14 in units of cm3 molecule ?1 sec1. The results are discussed in terms of understanding the dynamics of the perturbed stratosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号