首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The experimental results of creating bulk elementary excitations (BEEs) in isotopically pure liquid helium-II by helium atomic beams at low temperatures ~ 60 mK are presented. In the present experiment, BEE signals generated by 4He-atomic beams incident on the liquid free surface were detected by a bolometer positioned in the liquid helium-II. Some detected signals were very weak and depended on the heater power. Some examples of BEE detected signals are shown. Also, group velocities of the detected BEEs are evaluated and the threshold velocities of the helium atoms are discussed. The present experimental results demonstrate BEE creation, such as the third non-dispersive Zakharenko waves (supra-thermal phonons), with energies ~17 K (the Cooper pairing phenomenon doubles the supra-thermal phonon energy E k ~ 2 × 17 K~34 K in order to fulfil the energy conservation law) in the positive roton branch of the BEE energy spectra by helium atomic beams with suitable energies ~ 35 K, which perturb the liquid surface at incidence points similar to heaters.  相似文献   

2.
The experimental results of creating bulk elementary excitations (BEEs) in isotopically pure liquid helium-II by helium atomic beams at low temperatures ∼ 60 mK are presented. In the present experiment, BEE signals generated by 4He-atomic beams incident on the liquid free surface were detected by a bolometer positioned in the liquid helium-II. Some detected signals were very weak and depended on the heater power. Some examples of BEE detected signals are shown. Also, group velocities of the detected BEEs are evaluated and the threshold velocities of the helium atoms are discussed. The present experimental results demonstrate BEE creation, such as the third non-dispersive Zakharenko waves (supra-thermal phonons), with energies ∼17 K (the Cooper pairing phenomenon doubles the supra-thermal phonon energy Ek∼ 2 × 17 K∼34 K in order to fulfil the energy conservation law) in the positive roton branch of the BEE energy spectra by helium atomic beams with suitable energies ∼ 35 K, which perturb the liquid surface at incidence points similar to heaters.  相似文献   

3.
The parameters of the σ-ω-ρ model in the relativistic mean-field theory with nonlinear σ-meson self-interaction are determined by nuclear-matter properties, which are taken as those extracted by fits to data based on nonrelativistic nuclear models. The values of the relevant parameters are C σ 2∼ 94, C ω 2∼ 32, C ρ 2∼ 26, b∼ - 0.09, c∼ 1, and the σ-meson mass m σ∼ 370 MeV, while the value of the calculated nuclear- surface thickness is t∼ 1.4 fm. The field system is shown to be stable, since the σ-meson self-interaction energy is a lower bound in this whole parameter region with positive c. On the other hand, the effective nucleon mass M* is larger than 0.73M, if the symmetry incompressibility Ks is assumed to be negative and the nuclear-matter incompressibility K0 is kept less than 300 MeV. Received: 27 June 2001 / Accepted: 5 October 2001  相似文献   

4.
It has been experimentally demonstrated that the use of the effect of significant narrowing of the fluorescence spectrum from a nanocell that contains a column of atomic Rb vapor with a thickness of L = 0.5λ (where λ = 794 nm is the wavelength of laser radiation, whose frequency is resonant with the atomic transition of the D 1 line of Rb) and the application of narrowband diode lasers allow the spectral separation and investigation of changes in probabilities of optical atomic transitions between levels of the hyperfine structure of the D 1 line of 87Rb and 85Rb atoms in external magnetic fields of 10–2500 Gs (for example, for one of transitions, the probability increases ∼17 times). Small column thicknesses (∼390 nm) allow the application of permanent magnets, which facilitates significantly the creation of strong magnetic fields. Experimental results are in a good agreement with the theoretical values. The advantages of this method over other existing methods are noted. The results obtained show that a magnetometer with a local spatial resolution of ∼390 nm can be created based on a nanocell with the column thickness L = 0.5λ. This result is important for mapping strongly inhomogeneous magnetic fields.  相似文献   

5.
This article reports the accumulation effect of the 3He originating from tritium β decay; 3He created in solid remains in it, while one in liquid diffuses and goes out to the vapor gas. We observed this effect through the neutron detection from muon catalyzed fusion phenomenon (μCF), and gave it qualitative understanding, by which the muon transfer rate from (dμ) and (tμ) to helium was derived. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
A computer-aided optoacoustic gas analyzer based on a continuous13C16C2 laser for multicomponent pollution of atmospheric air is described. The analyzer has the ability to detect absorption of radiation by detected substances at the level of ∼1·10−9 cm−1 at a time resolution of 30 sec. Results of an experiment on simultaneous detection of H2O, CO2, NO2, NH3, HNO3, OCS, and C2H4 in the atmospheric air using 40 laser lines are presented. B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, 68, F. Skorina Ave., Minsk, 220072, Belarus. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 66, No. 3, pp. 345–350, May–June, 1999.  相似文献   

7.
YBa2Cu3O7-x and NbC superconducting films have been irradiated with helium ions with energies of 1.2 MeV and 200 keV, respectively, up to a dose of 4 × 1015 cm−2. After that, they were investigated using an NTEGRA Aura probe nanolaboratory in the atomic force microscopy mode. A degradation of physical parameters, as well as damage formation in the form of craters of tens nanometers in size, was observed after irradiation. Etched regions of ∼0.6 μm in size were formed at the places of accumulation of damages.  相似文献   

8.
The nuclear orientation of14N is investigated after the scattering of14N+ ions with energies ranging from 7 to 350 keV from an Si(111)-surface under grazing angles of incidence. For projectile energies above 50 keV, we find a constant nuclear orientationP 1=〈I z 〉/I∼22%, whereas towards lower energiesP I shows a pronounced decrease. Our measurements provide important information in the application of surface scattering to obtain nuclear polarized beams.  相似文献   

9.
The fusion cross section for the system6Li+28Si has been measured atE∼36 MeV. Combining this with the data available at lower energies, the nucleus-nucleus real potentials have been determined for a range of interaction distances.  相似文献   

10.
Diffusion and solubility of helium in Ce0.8Gd0.2O1.9 − δ ceramics (δ = 0, 0.015) with a submicrocrystal structure are studied by thermodesorption of helium from preliminarily saturated (in the gas phase) crystals at temperatures of 613 and 673 K in the saturated pressure range 0–21 MPa. It is shown that, in this ceramics (δ = 0), the defect-trap diffusion mechanism operates. The main positions for dissolution are neutral anion vacancies formed as a result of thermal dissociation of impurity-vacancy complexes and saturated up to ∼1 × 1019 cm−3 at P = 6 MPa and T = 673 K. The dissociation energy of the complex and the energy of helium dissolution in the neutral anion vacancy are estimated at ∼2 eV and below −0.3 eV, respectively.  相似文献   

11.
It is shown experimentally that use of fluorescence and transmission spectra obtained from nanocells with the thickness of column of rubidium atomic vapor L = λ/2 and L = λ, respectively (λ = 794 nm is the wavelength of laser radiation close to resonance with D 1-line transition of Rb atoms), by means of a narrowband diode laser allows spectral separation and study of variations of probabilities of atomic transitions between ground and excited states of hfs of D 1 lines of 85Rb and 87Rb atoms in the range of magnetic fields from 10 to 5000 G. Small thickness of atomic vapor column (∼390 nm and ∼794 nm) allows applying permanent magnets simplifying essentially creation of strong magnetic fields. Advantages of this technique are discussed as compared with the technique of saturated absorption. The obtained results show that a nanocell with submicrom thickness of vapor column may serve as a basis for designing a magnetometer with submicron local spatial resolution which is important in case of measuring strongly inhomogeneous magnetic fields. Experimental data are in good agreement with the theoretical results.  相似文献   

12.
Cavity ringdown (CRD) spectroscopy, with its high sensitivity, provides a novel way to perform continuous-wave (cw) stimulated Raman gain (SRG) spectroscopy, rather than by conventional optically detected coherent Raman techniques. Tunable cw laser light at ∼1544 nm is used to probe ringdown decay from a rapidly-swept, high-finesse optical cavity containing a gas-phase sample of interest and itself located inside the cavity of a cw single-longitudinal-mode Nd:YAG ring laser operating at ∼1064.4 nm. This approach is used to measure cw SRG spectra of the ν 1 fundamental rovibrational Raman band of methane gas at ∼2916.5 cm−1. The resulting SRG-CRD resonances have ringdown times longer than in the off-resonance case, in contrast to the usual shorter ringdown times arising from absorption and other loss processes. Previously reported noise-equivalent sensitivities have been substantially improved, by using a second ringdown cavity to facilitate subtraction of infrared-absorption background signals. Moreover, by employing a ringdown cavity in the form of a ring, the SRG-pump and CRD-detected Stokes beams can co-propagate uni-directionally, which significantly reduces Doppler broadening.  相似文献   

13.
Molecular vibrations of C2H2 and C2D2 adsorbed on Pt(111) at 140 K and ∼300K have been measured by high resolution electron energy loss spectroscopy. The comparison of C2H2 and C2D2 spectra allows an unambiguous assignment of the observed losses to the excitation of C−H bending, C−H stretching, and C−C stretching modes of nondissociatively adsorbed acetylene. From the relative intensities of losses the hybridisation state is determined to be nearsp 2. The C−C stretching frequency indicates a C−C bond order of ∼1.8.  相似文献   

14.
The effect of atomic disorder on the electron transport and the magnetoresistance (MR) of Co2CrAl Heusler alloy (HA) films has been investigated. We show that Co2CrAl films with L21 order exhibit a negative value for the temperature coefficient of resistivity (TCR) in a temperature range of 10 < T < 290 K, and the temperature dependence of electric conductivity varies as T 3/2 similarly to that of the zero-gap semiconductors. The atomic or the site disorder on the way of L21 → B2 → A2 → amorphous state in Co2CrAl HA films causes the deviation from this dependence: reduction in the absolute value of TCR as well as decrease in the resistivity down to ϱ(T = 293 K) ∼ 200 μΩ cm in comparison to ϱ(T = 293 K) ∼ 230 μΩ cm typical for the Co2CrAl films with L21 order. The magnetic-field dependence of MR of the Co2CrAl films with L21 order is determined by two competing contributions: a positive Lorentz scattering and a negative s-d scattering. The atomic disorder in Co2CrAl films drastically changes MR behavior due to its strong influence on the magnetic properties.  相似文献   

15.
Studies on PEO-based sodium ion conducting composite polymer films   总被引:1,自引:0,他引:1  
A sodium ion conducting composite polymer electrolyte (CPE) prepared by solution-caste technique by dispersion of an electrochemically inert ceramic filler (SnO2) in the PEO–salt complex matrix is reported. The effect of filler concentration on morphological, electrical, electrochemical, and mechanical stability of the CPE films has been investigated and analyzed. Composite nature of the films has been confirmed from X-ray diffraction and scanning electron microscopy patterns. Room temperature d.c. conductivity observed as a function of filler concentration indicates an enhancement (maximum) at 1–2 wt% filler concentration followed by another maximum at ∼10 wt% SnO2. This two-maxima feature of electrical conductivity as a function of filler concentration remains unaltered in the CPE films even at 100 °C (i.e., after crystalline melting), suggesting an active role of the filler particles in governing electrical transport. Substantial enhancement in the voltage stability and mechanical properties of the CPE films has been noticed on filler dispersion. The composite polymer films have been observed to be predominantly ionic in nature with t ion ∼ 0.99 for 1–2 wt% SnO2. However, this value gets lowered on increasing addition of SnO2 with t ion ∼ 0.90 for 25 wt% SnO2. A calculation of ionic and electronic conductivity for 25 wt% of SnO2 film works out to be ∼2.34 × 10−6 and 2.6 × 10−7 S/cm, respectively.  相似文献   

16.
By using the second-order moment of the power density, the beam width, far-field divergence angle and M2 factor of nonparaxial truncated flattened Gaussian (FG) beams are derived analytically. It is shown that the M2 factor of nonparaxial truncated FG beams depends not only on the truncation parameter δ and beam order N, but also on the initial waist-width to wavelength ratio w0/λ. The far-field divergence angle approaches an asymptotic value of θmax=63.435° when the truncation parameter δ → 0. For the special cases of N = 0 and δ → ∞ our results reduce to those of nonparaxial truncated Gaussian beams and nonparaxial untruncated FG beams, respectively.  相似文献   

17.
The total (p, n) reaction cross section for48Ca has been measured as a function of proton energy in the energy range 1.885 to 5.100 MeV with an overall resolution of ∼ 2 keV and in ∼ 5 keV energy steps. The fluctutions in fine resolution data have been analysed to determine the average coherence width 〈Γ〉. The excitation function averaged over large energy intervals has been analyzed in terms of the optical model. The isobaric analogue resonances atE p ∼ 1.95 and 4 MeV have been shape-analyzed to extract the proton partial width and the spectroscopic factorS n . A comparison of the gross structures observed in ∼ 55 keV averaged excitation function with the predictions of Izumo’s partial equilibrium model has also been made.  相似文献   

18.
We here present a comparative study of frequency stabilities of pump and probe lasers coupled at a frequency offset generated by coherent photon-atom interaction. Pump-probe spectroscopy of the Λ configuration in D2 transition of cesium is carried out to obtain sub-natural (∼2 MHz) electromagnetically induced transparency (EIT) and sub-Doppler (∼10 MHz) Autler-Townes (AT) resonance. The pump laser is locked on the saturated absorption spectrum (SAS, ∼13 MHz) and the probe laser is successively stabilized on EIT and AT signals. Frequency stabilities of pump and probe lasers are calculated in terms of Allan variance σ(2,τ) by using the frequency noise power spectrum. It is found that the frequency stability of the probe stabilized on EIT is superior (σ∼2×10−13) to that of SAS locked pump laser (σ∼10−12), whereas the performance of the AT stabilized laser is inferior (σ∼6×10−12). This contrasting behavior is discussed in terms of the theme of conventional master-slave offset locking scheme and the mechanisms underlying the EIT and sub-Doppler AT resonances in a Doppler broadened atomic medium.  相似文献   

19.
Let Ω be a region in ℝn and letp = Pi ) i 1m , be a partition ofΩ into a finite number of closed subsets having piecewise C2 boundaries of finite(n - 1 )dimensional measure. Let τ:Ω→Ω be piecewise C2 onP where, τi = τ|pi is aC 2 diffeomorphism onto its image, and expanding in the sense that there exists α > 1 such that for anyi = 1, 2,...,m ‖Dτi -1 ‖ < α-1, where Dτi -1 is the derivative matrixτ i - 1 and |‖·‖ is the Euclidean matrix norm. By means of an example, we will show that the simple bound of one-dimensional dynamics cannot be generalized to higher dimensions. In fact, we will construct a piecewise expanding C2 transformation on a fixed partition with a finite number of elements in ℝ2, but which has an arbitrarily large number of ergodic, absolutely continuous invariant measures  相似文献   

20.
Thin film iron-tetracyanoethylene Fe(TCNE) x , x∼2, as determined by photoelectron spectroscopy, was grown in situ under ultra-high vacuum conditions using a recently developed physical vapor deposition-based technique for fabrication of oxygen- and precursor-free organic-based molecular magnets. Photoelectron spectroscopy results show no spurious trace elements in the films, and the iron is of Fe2+ valency. The highest occupied molecular orbital of Fe(TCNE) x is located at ∼1.7 eV vs. Fermi level and is derived mainly from the TCNE singly occupied molecular orbital according to photoelectron spectroscopy and resonant photoelectron spectroscopy results. The Fe(3d)-derived states appear at higher binding energy, ∼4.5 eV, which is in contrast to V(TCNE)2 where the highest occupied molecular orbital is mainly derived from V(3d) states. Fitting ligand field multiplet and charge transfer multiplet calculations to the Fe L-edge near edge X-ray absorption fine structure spectrum yields a high-spin Fe2+ (3d6) configuration with a crystal field parameter 10Dq∼0.6 eV for the Fe(TCNE) x system. We propose that the significantly weaker Fe-TCNE ligand interaction as compared to the room temperature magnet V(TCNE)2 (10Dq∼2.3 eV) is a strongly contributing factor to the substantially lower magnetic ordering temperature (T C ) seen for Fe(TCNE) x -type magnets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号