首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The syntheses of new bis[octakis(hexylthio)phthalocyaninato] rare-earth metal(III) double-decker complexes [(C6S)8-Pc]2M (M = Gd(III), Dy(III), and Sm(III)) (2-4, respectively) are described. These compounds are very soluble in most common organic solvents. They have been fully characterized using elemental analysis, infrared, UV-vis spectroscopy, and mass spectrometry. The crystal structures of compounds 2-4 have been determined by X-ray diffraction on a single crystal. They are isostructural and crystallize in the monoclinic space group (space group C2/c). Their lattice constants have been determined in the following order: (2) a = 31.629(4) Angstroms, b = 32.861(4) Angstroms, c = 20.482(2) Angstroms, beta = 126.922(2) degrees, V = 17019(3) Angstroms(3); (3) a = 31.595(2) Angstroms, b = 32.816(2) Angstroms, c = 20.481(1) Angstroms, beta = 127.005(1) degrees, V = 16958(2) Angstroms(3); (4) a = 31.563(2) Angstroms, b = 32.796(2) Angstroms, c = 20.481(1) Angstroms, beta = 127.032 degrees, V = 16924(2) Angstroms(3). The magnetic properties of compounds 2-4 were studied, and it was revealed that the lanthanide ions and the radical delocalized on the two phthalocyanine rings are weakly interacting. The mesogenic properties of these new materials were studied by differential scanning calorimetry and optical microscopy. These phthalocyanine derivatives form columnar-hexagonal (Col(h)) mesophases. Thin films of bis[octakis(hexylthio)phthalocyaninato] rare-earth metal(III) double-decker complexes (2-4) were prepared by a spin-coating technique. Thermally induced molecular reorganization within films of bis[octakis(hexylthio)phthalocyaninato] rare-earth metal(III) double-decker complexes (2-4) was studied by the methods of ellipsometry, UV-vis absorption spectroscopy, and atomic force microscopy. Heat treatment produces molecular ordering, which is believed to be due to stacking interaction between neighboring phthalocyanine moieties.  相似文献   

2.
A luminescent molecular rectangle [Au(4)(micro-PAnP)(2)(micro-bipy)(2)](OTf)(4) (1.(OTf)(4)) (PAnP = 9,10-bis(diphenylphosphino)anthracene, bipy = 4,4'-bipyridine, X = NO(3)(-) or OTf(-)), synthesized from the self-assembly of the molecular "clip" Au(2)(micro-PAnP)(OTf)(2) and bipy, shows a large rectangular cavity of 7.921(3) x 16.76(3) A. The electronic absorption and emission spectroscopy, and electrochemistry of the metallacyclophane, have been studied. The 1(4+) ions are self-assembled into 2D mosaic in the solid state via complementary edge-to-face interactions between the Ph groups. (1)H NMR titrations ratify the 1:1 complexation between 1(4+) and various aromatic molecules. Comparing the structures of the inclusion complexes indicates an induced-fit mechanism operating in the binding. The emission of 1(4+) is quenched upon the guest binding. The binding constants are determined by both (1)H NMR and fluorescence titrations. Solvophobic and ion-dipole effects are shown to be important in stabilizing the inclusion complexes.  相似文献   

3.
Monte Carlo grand canonical molecular simulations on the hydration of Na-, K-, and Ca-montmorillonite show that between 333 and 533 K and 300-1300 bar Na-montmorillonite forms stable one-layer hydrates of d(001) spacings 12.64-12.38 Angstroms, K-montmorillonite of 12.78-12.59 Angstroms, and Ca-montmorillonite of 12.48-12.32 Angstroms. A two-layer hydrate of 14.80 Angstroms occurs for Na-montmorillonite at 533 K and 1300 bar, for K-montmorillonite of 15.32 Angstroms at 533 K and 1300 bar and of 14.74 Angstroms at 533 K and 2000 bar, and for Ca-montmorillonite of 13.83 Angstroms at 473 K and 1000 bar. Three-layer hydrates may possibly form within these same ranges. Outside of them, one-layer hydrates simulate as the only stable hydrates. In sedimentary basins, the two-layer hydrate of Ca-montmorillonite will locate at 6.7 km depth and those of Na- and K-montmorillonite at 8.7 km depth; above and below these depths, the one-layer hydrates are the stable phases.  相似文献   

4.
The combination of an amide containing a linear ligand (L1) and an organometallic molecular "clip" (clip-1) leads to the self-assembly of a Pt4 nanoscopic framework representing the first example of a Pt-based molecular rectangle (rectangle-1) incorporating amide functionality. A complementary approach was also followed to prepare a Pd(II)-based molecular rectangle (rectangle-2) by reaction of a donor organic rigid clip (clip-2) and trans-(PEt3)2Pd(OTf)2 as the linear metal acceptor (L2). The Pd(II)-rectangle was characterised by multinuclear NMR and ESI-mass spectroscopy.  相似文献   

5.
Mitzi DB 《Inorganic chemistry》2005,44(20):7078-7086
Two hydrazine zinc(II) telluride polymorphs, (N2H4)2ZnTe, have been isolated, using ambient-temperature solution-based techniques, and the crystal structures determined: alpha-(N2H4)2ZnTe (1) [P21, a = 7.2157(4) Angstroms, b = 11.5439(6) Angstroms, c = 7.3909(4) Angstroms, beta = 101.296(1) degrees, Z = 4] and beta-(N2H4)2ZnTe (2) [Pn, a = 8.1301(5) Angstroms, b = 6.9580(5) Angstroms, c = 10.7380(7) Angstroms, beta = 91.703(1) degrees, Z = 4]. The zinc atoms in 1 and 2 are tetrahedrally bonded to two terminal hydrazine molecules and two bridging tellurium atoms, leading to the formation of extended one-dimensional (1-D) zinc telluride chains, with different chain conformations and packings distinguishing the two polymorphs. Thermal decomposition of (N2H4)2ZnTe first yields crystalline wurtzite (hexagonal) ZnTe at temperatures as low as 200 degrees C, followed by the more stable zinc blende (cubic) form at temperatures above 350 degrees C. The 1-D polymorphs are soluble in hydrazine and can be used as convenient precursors for the low-temperature solution processing of p-type ZnTe semiconducting films.  相似文献   

6.
The new structural type (1) K(2.3)Mo12S14 was prepared by solid-state reaction at 1500 degrees C in a sealed molybdenum crucible. The compound crystallizes in the trigonal space group P1c, Z = 2, (1) a = 9.1720(7) Angstroms, c = 16.403(4) Angstroms. Its crystal structure was determined from single-crystal X-ray diffraction data and consists of interconnected Mo12S14 units that form an original and unprecedented three-dimensional framework in which large tunnels are occupied randomly by a part of the K+ ions. The remaining K+ ions are localized between two consecutive Mo(12)S(14) units along the c axis. By carrying out topotactic oxydo-reduction reactions at low temperature (<100 degrees C), we were able to remove or insert K+ ions in the channels and thus form isostructural phases K(1+x)Mo12S14 (0 < or = x < or = 1.6). Thus, we have solved the crystal structures for the following three compositions: (2) K(2.1)Mo12S14, (3) KMo12S14, and (4) K(2.6)Mo12S14 ((2) a = 9.1476(4) A, c = 16.421(1) Angstroms; (3) a = 9.0797(9) Angstroms, c = 16.412(6) Angstroms; and (4) a = 9.1990(4) Angstroms, c = 16.426(4) Angstroms). Electrical resistivity measurements carried out on single crystals of K(2.3)Mo12S14 and KMo12S14 indicate that the former is semiconducting, whereas the latter is metallic. The evolution of the Mo-Mo distances with respect to the stoichiometry in potassium is discussed.  相似文献   

7.
The strontium gallium oxynitride Sr(4)GaN(3)O and nitride-carbodiimide Sr(4)GaN(3)(CN(2)) are reported, synthesized as single crystals from molten sodium at 900 degrees C. Red Sr(4)GaN(3)O crystallizes in space group Pbca (No. 61) with a = 7.4002(1) Angstroms, b = 24.3378(5) Angstroms, c = 7.4038(1) Angstroms, and Z = 8, as determined from single-crystal X-ray diffraction measurements at 150 K. The structure may be viewed as consisting of slabs [Sr(4)GaN(3)](2+) containing double layers of isolated [GaN(3)](6-) triangular anions arranged in a "herringbone" fashion, and these slabs are separated by O(2-) anions. Brown Sr(4)GaN(3)(CN(2)) has a closely related structure in which the oxide anions in the Sr(4)GaN(3)O structure are replaced by almost linear carbodiimide [CN(2)](2-) anions [Sr(4)GaN(3)(CN(2)): space group P2(1)/c (No. 14), a = 13.4778(2) Angstroms, b = 7.4140(1) Angstroms, c = 7.4440(1) Angstroms, beta = 98.233(1) degrees, and Z = 4].  相似文献   

8.
Water acts as a "molecular clip" to form a supramolecular cryptand structure that improves complexation of a diammonium salt by pseudorotaxane formation, and leads to a novel dimer in the solid state.  相似文献   

9.
The boron-atom insertion reaction of nido-9,11-I(2)-7,8-C(2)B(9)H(9)(2-), with the HBCl(2):SMe(2) complex yields closo-4,7-I(2)-1,2-C(2)B(10)H(10), 1, in excellent yield. Although the two boron atoms (B3 and B6) nearest to the carbon atoms in 1 are equally available for attack by nucleophiles, the boron-degradation reaction of 1 with alkoxide ion occurs only at the B6 vertex, yielding regioselectively [(CH(3))(3)NH][nido-2,4-I(2)-7,8-C(2)B(9)H(10)], 2. The molecular structures of 1 and 2 have been determined by X-ray diffraction studies. Crystallographic data are as follows. For 1, monoclinic, space group P2(1)/n, a = 6.9199(19) Angstroms, b = 23.9560(7) Angstroms, c = 7.2870(2) Angstroms, beta = 94.081(4) degrees, V = 1204.9(6) Angstroms(3), Z = 4, rho(calcd) = 2.18 g cm(-3), R = 0.020, R(w) = 0.0610; for 2, orthorhombic, space group Pca2(1), a = 14.1141(7) Angstroms, b = 7.0276(4) Angstroms, c = 16.4602(9) Angstroms, V = 1632.7(15) Angstroms(3), Z = 4, rho(calcd) = 1.81 gcm(-3), R = 0.022, R(w) = 0.0623.  相似文献   

10.
Electrical tunnel junctions consisting of alkanethiol molecules self-assembled on Au-coated Si substrates and contacted with Au-coated atomic force microscopy tips were characterized under varying junction loads in a conducting-probe atomic force microscopy configuration. Junction load was cycled in the fashion of a standard nanoindentation experiment; however, junction conductance rather than probe depth was measured directly. The junction conductance data have been analyzed with typical contact mechanics (Derjaguin-Müller-Toporov) and tunneling equations to extract the monolayer modulus (approximately 50 GPa), the contact transmission (approximately 2 x 10(-6)), contact area, and probe depth as a function of load. The monolayers are shown to undergo significant plastic deformation under compression, yielding indentations approximately 7 Angstroms deep for maximum junction loads of approximately 50 nN. Comparison of mechanical properties for different chain lengths was also performed. The film modulus decreased with the number of carbons in the molecular chain for shorter-chain films. This trend abruptly reversed once 12 carbons were present along the backbone.  相似文献   

11.
We have prepared Am(IO(3))(3) as a part of our continuing investigations into the chemistry of the 4f- and 5f-elements' iodates. Single crystals were obtained from the reaction of Am(3+) and H(5)IO(6) under mild hydrothermal conditions. Crystallographic data on an eight-day-old crystal are (21 degrees C, Mo Kalpha, lambda = 0.71073 Angstroms): monoclinic, space group P2(1)/c, a = 7.2300(5) Angstroms, b = 8.5511(6) Angstroms, c = 13.5361(10) Angstroms, beta = 100.035(1) degrees, V = 824.06(18), Z = 4. The structure consists of Am(3+) cations bound by iodate anions to form [Am(IO(3))(8)] units, where the local coordination environment around the americium centers is a distorted dodecahedron. There are three crystallographically unique iodate anions within the structure that bridge in both bidentate and tridentate fashions to form the overall three-dimensional structure. Repeated collection of X-ray diffraction data with time for a crystal of (243)Am(IO(3))(3) revealed an anisotropic expansion of the unit cell, presumably from self-irradiation damage, to generate values of a = 7.2159(7) Angstroms, b = 8.5847(8) Angstroms, c = 13.5715(13) Angstroms, beta = 99.492(4) degrees, V = 829.18(23) after approximately five months. The Am(IO(3))(3) crystals have also been characterized by Raman spectroscopy and the spectral results compared to those for Cm(IO(3))(3). Three strong Raman bands were observed for both compounds and correspond to the I-O symmetric stretching of the three crystallographically distinct iodate anions. The Raman profile suggests a lack of interionic vibrational coupling of the I-O stretching, while intraionic coupling provides symmetric and asymmetric components that correspond to each iodate site. Photoluminescence data for both Am(IO(3))(3) and Cm(IO(3))(3) are reported here for the first time. Assignments for the electronic levels of the actinide cations were based on these photoluminescence measurements and indicate the presence of vibronic coupling between electronic transitions and IO(3)(-) vibrational modes in both compounds.  相似文献   

12.
A series of low molecular weight organic gelator (LMOG) gel systems sensitive to alkaline/acidic stimuli was established by employing amino acid derivatives of cholesterol as "latent" gelators, which are cholesteryl glycinate (1), cholesteryl L-alaninate, cholesteryl D-alaninate, cholesteryl L-phenyl alaninate, and cholesteryl D-phenyl alaninate. The hydrochloric salts are denoted as 2, 3, 4, 5, and 6, respectively. For the 18 solvents tested, one proved to be a weak gelator and gels only two of the solvents. Its gelation ability, however, was greatly improved by bubbling HCl gas, which was produced by reaction of concentrated sulfuric acid with NaCl, through its solution owing to protonation of its amino group. It was demonstrated that the protonated form of it gelled 14 of the solvents tested. Further investigation revealed that the gels changed into solution with addition of any of the amines, including triethylamine (TEA), diethylamine, ethylenediamine, and NH3. The phase transition could be reversed by further introduction of the acidic gas. SEM measurements showed that 1 self-assembled into different supramolecular structures in different gels. Salt effect studies proved that electrostatic interaction is one of the driving forces for formation of the gels.  相似文献   

13.
An adamantanoid (H2O)10 cluster is formed within the hydrophobic cavity of a self-assembled coordination cage. This cluster is termed "molecular ice" because it is the smallest unit of naturally occurring Ic-type ice. X-ray structural analysis, coupled with neutron diffraction study, reveals that the molecular ice is formed not by a simple space-filling effect but by efficient molecular recognition within the cage via H2O:...pi interaction.  相似文献   

14.
We report on the "molecular wiring" efficiency of glucose oxidase in organized self-assembled nanostructures comprised of enzyme layers alternating with layers of an osmium-derivatized poly(allylamine) cationic polyelectrolyte, acting as redox relays. Varying the relative position of the active enzyme layer in nanostructures alternating active enzyme and inactive apoenzyme we have demonstrated that the specific rate of bimolecular FADH(2) oxidation ("wiring efficiency") is limited by the diffusion-like electron hopping mechanism in the multilayers.  相似文献   

15.
Zhang HY  Ye KQ  Zhang JY  Liu Y  Wang Y 《Inorganic chemistry》2006,45(4):1745-1753
Dinuclear and tetranuclear copper 2,6-bis(2-hydroxyphenyl)pyridine (H(2)L) complexes Cu2(L)2(py)2 (1) and Cu4(L)4(DMF) (2) were synthesized. The complexes 1 and 2 were characterized by elemental analyses, mass spectrometry, and single-crystal X-ray diffraction analyses. 1 crystallizes in the monoclinic space group P2(1)/n with a = 13.330(2) Angstroms, b = 9.361(1) Angstroms, c = 14.676(1) Angstroms, beta = 100.94(1) degrees, V = 1798.1(3) Angstroms(3), and Z = 2. 2 crystallizes in the monoclinic space group P2(1)/n with a = 13.360(1) Angstroms, b = 14.884(1) Angstroms, c = 15.462(2) Angstroms, beta = 97.50(4) degrees, V = 3048.4(1) Angstroms(3), and Z = 2. Tetranuclear zinc complex Zn4(L)4(py)4 (3) was prepared and characterized by X-ray diffraction. 3 crystallizes in the triclinic space group P with a = 13.770(1) Angstroms, b = 15.465(1) A, c = 16.409(2) Angstroms, alpha = 88.877(9) degrees, beta = 88.035(4) degrees, gamma = 82.956(3) degrees, V = 3465.6(5) Angstroms(3), and Z = 2. The di- and tetranuclear complexes 1-3contain phenoxo bridges. 1 is a dinuclear complex with two Cu(II) centers, two py ligands, and two L ligands, and each L ligand donates its pyridyl ring and one of the phenolate groups to one metal and shares the other phenolate group between both metals, affording a Cu(2)(mu-O)(2) core. 2, in contrast, is a tetranuclear complex with four Cu(II) centers and four L ligands. Two of the L ligands have the same coordination mode as 1, and the other two L ligands donate their pyridyl rings to one metal and share both phenolate groups between four metals, resulting in three four-membered Cu2(mu-O)2 rings, which joined each other and showed great distortion from planarity. 3 is a tetranuclear complex with four Zn(II) centers, four pyridine ligands, and four L ligands, and the L ligands have the same coordination modes as those of 2. Single-crystal X-ray analysis showed that hydrogen-bonding and pi-pi stacking interactions exist in complexes 1 and 2 resulting in two- and three-dimensional molecular arrangements, and the parallel arrangement of the ligand in the crystal of complex 3 resulted in a close inter- and intramolecular pi-pi interactions. Investigation of the crystals, as well as an amorphous thin film and powder of 3, by photoluminescence (PL) allowed the effect of the molecular packing on the emission properties to be elucidated. Furthermore, the electroluminescent (EL) properties of 3 were examined by fabricating a multilayer device with structure of [ITO/NPB/(ZnL)(n)/Alq3/LiF/Al] (NPB = N,N'-bis(alpha-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine, Alq3 = tris(8-hydroxyquinolinato)aluminum).  相似文献   

16.
Wang CM  Liao CH  Chen PL  Lii KH 《Inorganic chemistry》2006,45(4):1436-1438
A new uranium(IV) fluorooxalate, UF3(H2O)(C2O4)0.5, has been synthesized by a hydrothermal method and structurally characterized by single-crystal X-ray diffraction, infrared spectroscopy, and thermogravimetric analysis. The structure consists of two-dimensional layers of corner- and edge-sharing tricapped trigonal prisms with the composition UF(4/2)F(2/2)O3 linked by bisbidentate oxalate ligands to form a three-dimensional framework. Magnetic susceptibilities were measured to confirm the tetravalent state of uranium. Crystal data: monoclinic, space group C2/c, a = 17.246(3) Angstroms, b = 6.088(1) Angstroms, c = 8.589(2) Angstroms, beta = 95.43(3) degrees, and Z = 8.  相似文献   

17.
The newly prepared water-soluble naphthalene tweezer 2a and anthracene clip 4a (substituted both with lithium methanephosphonate groups in the central spacer unit) undergo an unexpected self-assembly in aqueous solution. The highly ordered intertwined structures of the self-assembled dimers [2a]2 and [4a]2 were elucidated by quantum chemical 1H NMR shift calculations. 2a and 4a form extremely stable host-guest complexes with N-methylnicotinamide 8 in methanol and water as well. According to the thermodynamic parameters determined by 1H NMR titration experiments at various temperatures the self-assembly of 2a and 4a and their strong binding to NMNA 8 observed in aqueous solution are enthalpy driven (DeltaH < 0); the enthalpic driving force is partially compensated by an unfavorable entropy (TDeltaS < 0). Self-assembly and the host-guest binding are therefore beautiful examples of the nonclassical hydrophobic effect.  相似文献   

18.
Disc-shaped objects can be induced to form columnar assemblies whether their scale is tens of Angstroms (molecular), tens of nanometers (macromolecular or supramolecular), hundreds of nanometers (colloidal) or tens of microns (‘manufactured’ platelets). The last couple of years have seen rapid progress in the development of conducting columnar systems and in controlling the orientation of discotic mesophases. The first serious commercial development has also emerged. Fuji Film Company has perfected and marketed optical compensating films based on cross-linked nematic discogens with controlled hybrid orientation.  相似文献   

19.
Berg RW  Thorup N 《Inorganic chemistry》2005,44(10):3485-3493
Reactions between solid zinc oxide and molten sodium or potassium pyrosulfates at 500 degrees C are shown by Raman spectroscopy to be 1:1 reactions leading to solutions. By lowering the temperature of the solution melts, colorless crystals form. Raman spectra of the crystals are given and tentatively assigned. Crystal structures of the monoclinic salts at room temperature are given. Na(2)Zn(SO(4))(2): space group = P2/n (No. 13), Z = 8, a = 8.648(3) Angstroms, b = 10.323(3) Angstroms, c = 15.103(5) Angstroms, beta = 90.879(6) degrees, and wR(2) = 0.0945 for 2748 independent reflections. K(2)Zn(SO(4))(2): space group = P2(1)/n (No.14), Z = 4, a = 5.3582(11) Angstroms, b = 8.7653(18) Angstroms, c = 16.152(3) Angstroms, beta = 91.78(3) degrees , and wR(2) = 0.0758 for 1930 independent reflections. In both compounds, zinc is nearly perfectly trigonally bipyramidal, coordinated to five oxygen atoms, with Zn-O bond lengths ranging from 1.99 to 2.15 Angstroms, equatorial bonds being slightly shorter on the average. The O-Zn-O angles are approximately 90 degrees and 120 degrees . The sulfate groups connect adjacent Zn(2+) ions, forming complicated three-dimensional networks. All oxygen atoms belong to nearly perfect tetrahedral SO(4)(2-) groups, bound to zinc. No oxygen atom is terminally bound to zinc; all zinc oxygens are further connected to sulfur atoms (Zn-O-S bridging). In both structures, some oxygen atoms are uniquely bound to certain S atoms. The sulfate group tetrahedra have quite short (1.42-1.45 Angstroms) terminal S-O bonds in comparison to the longer (1.46-1.50 Angstroms) Zn-bridging S-O bonds. The Na(+) or K(+) ions adopt positions between the ZnO(5) hexahedra and the SO(4) tetrahedra, completing the three-dimensional network of the M(2)Zn(SO(4))(2) structures. Bond distances and angles compare well with literature values. Empirical correlations between S-O bond distances and average O-S-O bond angles follow a previously found trend.  相似文献   

20.
王晓蜂  袁荞龙 《化学学报》2012,70(9):1047-1054
以(N,N-二甲氨基-4-吡啶)五氰合铁(II)封端的聚氧丙烯聚氧乙烯共聚物(EPE-Fe)与苯乙烯在水中自组装形成纳米体系(EPE-Fe-St), 在纳米尺度受限空间内进行了苯乙烯自由基聚合, 制备了聚苯乙烯微球(EPE-Fe-PS). 用Fe3+对自组装体系的纳米球壳进行固化后形成Fe-EPE-Fe-St 体系, 聚合后也制备了聚苯乙烯微球(Fe-EPE-Fe-PS). 研究结果表明,制备了粒径为60~200 nm 的不同粒径单分散聚苯乙烯微球, 聚合温度对纳米Fe-EPE-Fe-St 体系粒径影响较小, 而对EPE-Fe-St 体系较大. 在受限空间内苯乙烯的自由基聚合可得到数均分子量超过70 万的聚苯乙烯; 自组装体系中引发剂量增多使聚苯乙烯分子量下降, 聚合温度上升也使分子量下降, 而增加自组装的EPE-Fe 用量可增加聚苯乙烯的分子量. 两种受限条件下的聚苯乙烯微球的玻璃化转变温度(Tg)在90~135 ℃之间, 纳米反应器壳层的硬化提高了聚苯乙烯微球的Tg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号