首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mild, efficient and convenient extraction method of using 2-mercaptoethanol contained extractant solution combined with an incubator shaker for determination of mercury species in biological samples by HPLC–ICP-MS has been developed. The effects of the concentration of 2-mercaptoethanol, the composition of the extractant solution and the shaking time on the efficiency of mercury extraction were evaluated. The optimization experiments indicated that the quantitative extraction of mercury species from biological samples could be achieved by using 0.1% (v/v) HCl, 0.1% (v/v) 2-mercapoethanol and 0.15% (m/v) KCl extractant solution in an incubator shaker for shaking overnight (about 12 h) at room temperature. The established method was validated by analysis of various biological certified reference materials, including NRCC DOLT-3 (dogfish liver), IAEA 436 (tuna fish), IAEA MA-B-3/TM (garfish filet), IAEA MA-M-2/TM (mussel tissue), GBW 08193 (bovine liver) and GBW 08572 (prawn). The analytical results of the reference materials were in good agreement with the certified or reference values of both methyl and total mercury, indicating that no distinguishable transformation between mercury species had occurred during the extraction and determination procedures. The limit of detection (LOD) for methyl (CH3Hg+) and inorganic mercury (Hg2+) by the method are both as 0.2 μg L−1. The relative standard deviation (R.S.D.s) for CH3Hg+ and Hg2+ are 3.0% and 5.8%, respectively. The advantages of the developed extraction method are that (1) it is easy to operate in HPLC–ICP-MS for mercury species determination since the extracted solution can be directly injected into the HPLC column without pH adjustment and (2) the memory effect of mercury in the ICP-MS measurement system can be reduced.  相似文献   

2.
Fan Z 《Talanta》2006,70(5):1164-1169
Hg(II)-imprinting thiol-functionalized mesoporous sorbent was prepared by a sol–gel method and characterized by X-ray diffraction (XRD), FT-IR spectroscopy and nitrogen gas adsorption–desorption. The static adsorption capacity of the Hg(II)-imprinted and non-imprinted sorbent was 78.5 and 26.6 mg g−1, respectively. The breakthrough capacity was 4.46 mg g−1, and the relative selectivity coefficient for Hg(II) in the presence of Cd and Pb was 3.3 and 3.9, respectively. A new method using a micro-column packed with Hg(II)-imprinting thiol-functionalized mesoporous sorbent has been developed for preconcentration of trace mercury prior to its determination by inductively coupled plasma optical emission spectrometry (ICP-OES). The effects of pH, sample flow rate and volume, elution solution and interfering ions on the recovery of the analyte have been investigated. The limit of detection was 0.39 ng ml−1 with a concentration factor of 150 times. The developed method has been applied to the determination of trace mercury in some biological and environmental samples with satisfactory results. The accuracy was assessed through recovery experiments and analysis of certified reference material.  相似文献   

3.
Bagheri H  Gholami A 《Talanta》2001,55(6):681-1150
A new, simple and sensitive method for the simultaneous determination of mercury(II) and methylmercury chloride at sub-ng l−1 levels in river waters is described. Inorganic and organic mercury were preconcentrated from fresh water samples simultaneously on a laboratory-made column containing 2-mercaptobenzimidazol loaded on silica gel and then quantitatively eluted with 0.05 M KCN solution and 2.0 M HCl to desorp inorganic and methylmercury species, respectively. After irradiation with an intensive UV source, MeHg+ was decomposed and mercury vapours were generated from inorganic and organic mercury using an acidic SnCl2 solution in a continuous flow system and were subsequently determined with a cold vapour atomic fluorescence (CV-AFS) spectrometer. Detection limits (3σ) were 0.07 and 0.05 ng l−1 (as Hg) for mercury(II) chloride and methylmercury chloride, respectively. Relative standard deviations of method (%R.S.D.) were 8.8 and 10 for inorganic and organomercuric species in the river water, respectively. The analysis of real samples, taken from different rivers, showed that inorganic mercury levels ranged from 4.0±0.6 to 12±1 ng l−1 (as Hg and 95% confidence limit) and methylmercury levels at 0.2±0.02 ng l−1(as Hg).  相似文献   

4.
Arancibia V  López A  Zúñiga MC  Segura R 《Talanta》2006,68(5):1567-1573
The separation of arsenic based on in situ chelation with ammonium diethyl dithiophosphate (ADDTP) has been carried out using methanol-modified supercritical CO2. Aliquots of extract were added to an electroanalytical cell and arsenic was determined by square wave cathodic stripping voltammetry (SWCSV) at a hanging mercury drop electrode (HMDE). Quantitative extractions of As(DDTP)3 were achieved when the experiments were carried out at a pressure of 2500 psi, a temperature of 90 °C, 2.0 mL of methanol, 20.0 min of static extraction and 5.0 min of dynamic extraction in the presence of 18 mg of ADDTP. Analysis of arsenic was made using 150 mg L−1 of Cu(II) in 1 M HCl solution as supporting electrolyte in the presence of ADDTP as ligand. Preconcentration was carried out by deposition at a potential of −0.50 V and the intermetallic compound CuxAsy was reduced at a potential of −0.77 to −0.82 V, depending on ligand concentration. The results showed that the presence of ligand plays an important role, increasing the method's sensitivity and preventing the oxidation of As(III). The calibration graph of the As(DDTP)3 solution was linear from 0.8 to 12.5 μg L−1 of arsenic (LOD 0.5 μg L−1, R = 0.9992, tacc = 60 s). The method was validated using carrot pulp spiked with arsenic solution. This method was applied to the determination of arsenic in samples of carrots, beets and irrigation water. Arsenic in beets was: skin 4.10 ± 0.18 mg kg−1; pulp 3.83 ± 0.19 mg kg−1 and juice 0.71 ± 0.09 mg L−1; arsenic in carrots was: skin 2.15 ± 0.09 mg kg−1; pulp 0.59 ± 0.11 mg kg−1 and juice 0.71 ± 0.03 mg L−1. Arsenic in water were: Chiu-Chiu 0.08 mg L−1, Inacaliri 1.12 mg L−1, and Salado river 0.17 ± 0.07 mg L−1.  相似文献   

5.
A pervaporation-flow injection (PFI) method is described for the analysis of cyanide in the presence of sulfide. The interfering sulfide ion in the injected sample is precipitated on-line using an acidified lead nitrate reagent solution before the donor stream enters the pervaporation cell. Using amperometric detection at a silver electrode set at −50 mV (vs Ag/AgCl), linear calibration was obtained in the range 0.02–100.0 mg l−1 with a detection limit of 1.0 μg l−1. Sample throughput was of the order of 12–15 h−1. When the method was applied to the analysis of synthetic samples, there was no significant interference from sulfide at concentrations up to 50 mg l−1. Thiocyanate did not interfere at levels up to 1000 mg l−1. When applied to industrial samples containing sulfide and thiocyanate ions where the cyanide ions are predominantly complexed with various metal ions the PFI method was found to give results close to those obtained by standard distillation methods for weak acid dissociable (WAD) cyanide.  相似文献   

6.
Maya F  Estela JM  Cerdà V 《Talanta》2008,74(5):1534-1538
A multisyringe flow injection system (MSFIA) with spectrophotometric detection is proposed as a fast, robust and low-reagent consumption system for the determination of chloride (Cl) in waters. The system is based in the classic reaction of Cl with Fe3+ and Hg(SCN)2, but due to the hazardous properties of this last reagent, the proposed methodology has been developed with the aim to minimize the consumption of this one, consuming less than 0.05 mg of Hg for a Cl determination, being the system of this type with the lowest Hg consumption. The linear working range was between 1 and 40 mg L−1 Cl and the detection limit was 0.2 mg L−1 Cl. The repeatability (RSD) was 0.8% for a 10 mg L−1 Cl solution, and the injection throughput was 130 h−1. The proposed system is compared with other chloride monitoring flow systems, this comparison is realized with a point of view of the equilibrium between the obtained analytical features and produced residues toxicity. The proposed system was applied to the determination of Cl in mineral, tap and well water.  相似文献   

7.
Xiaohong Li  Yingying Su  Kailai Xu  Xiandeng Hou  Yi Lv   《Talanta》2007,72(5):1728-1732
A simple, sensitive and interference-free method was proposed for the determination of arsenic, based on the generation of volatile arsenic trichloride coupled with atomic fluorescence spectrometry. Thiourea, together with l-ascorbic acid, was used to reduce As(V) to As(III), and the chloride generation was based on the reaction between As(III) and hydrochloric acid. Under the optimized experimental conditions, the present procedure allows for the quantification of arsenic in the concentration range of 0.01–4.0 mg L−1, with a limit of detection (3σ) of 6.0 μg L−1. The relative standard deviation (R.S.D.) is 4.0% for 0.1 mg L−1 arsenic (n = 7). Finally, the proposed method was successfully applied to the determination of arsenic in several certified reference samples (stainless steel, alloy steel, copper alloy and water sample) and real samples (brass material and spiked cobalt material), with analytical results well-agreed with those by ICP-MS.  相似文献   

8.
Bismuth as BiCl4 and BH4 ware successively retained in a column (150 mm × 4 mm, length × i.d.) packed with Amberlite IRA-410 (strong anion-exchange resin). This was followed by passage of an injected slug of hydrochloric acid resulting in bismuthine generation (BiH3). BiH3 was stripped from the eluent solution by the addition of a nitrogen flow and the bulk phases were separated in a gas–liquid separator. Finally, bismutine was atomized in a quartz tube for the subsequent detection of bismuth by atomic absorption spectrometry. Different halide complexes of bismuth (namely, BiBr4, BiI4 and BiCl4) were tested for its pre-concentration, being the chloride complexes which produced the best results. Therefore, a concentration of 0.3 mol l−1 of HCl was added to the samples and calibration solutions. A linear response was obtained between the detection limit (3σ) of 0.225 and 80 μg l−1. The R.S.D.% (n = 10) for a solution containing 50 μg l−1 of Bi was 0.85%. The tolerance of the system to interferences was evaluated by investigating the effect of the following ions: Cu2+, Co2+, Ni2+, Fe3+, Cd2+, Pb2+, Hg2+, Zn2+, and Mg2+. The most severe depression was caused by Hg2+, which at 60 mg l−1 caused a 5% depression on the signal. For the other cations, concentrations between 1000 and 10,000 mg l−1 could be tolerated. The system was applied to the determination of Bi in urine of patients under therapy with bismuth subcitrate. The recovery of spikes of 5 and 50 μg l−1 of Bi added to the samples prior to digestion with HNO3 and H2O2 was in satisfactory ranges from 95.0 to 101.0%. The concentrations of bismuth found in six selected samples using this procedure were in good agreement with those obtained by an alternative technique (ETAAS). Finally, the concentration of Bi determined in urine before and after 3 days of treatment were 1.94 ± 1.26 and 9.02 ± 5.82 μg l−1, respectively.  相似文献   

9.
A sample solution was passed at 20 ml min−1 through a column (150×4 mm2) of Amberlite IRA-410Stron anion-exchange resin for 60 s. After washing, a solution of 0.1% sodium borohydride was passed through the column for 60 s at 5.1 ml min−1. Following a second wash, a solution of 8 mol l−1 hydrochloric acid was passed at 5.1 ml min−1 for 45 s. The hydrogen selenide was stripped from the eluent solution by the addition of an argon flow at 150 ml min−1 and the bulk phases were separated by a glass gas–liquid separator containing glass beads. The gas stream was dried by passing through a Nafion® dryer and fed, via a quartz capillary tube, into the dosing hole of a transversely heated graphite cuvette containing an integrated L’vov platform which had been pretreated with 120 μg of iridium as trapping agent. The furnace was held at a temperature of 250°C during this trapping stage and then stepped to 2000°C for atomization. The calibration was performed with aqueous standards solution of selenium (selenite, SeO32−) with quantification by peak area. A number of experimental parameters, including reagent flow rates and composition., nature of the gas–liquid separator, nature of the anion-exchange resin, column dimensions, argon flow rate and sample pH, were optimized. The effects of a number of possible interferents, both anionic and cationic were studies for a solution of 500 ng 1−1 of selenium. The most severe depressions were caused by iron (III) and mercury (II) for which concentrations of 20 and 10 mg  1−1 caused a 5% depression on the selenium signal. For the other cations (cadmium, cobalt, copper, lead,. magnesium, and nickel) concentrations of 50–70 mg 1−1 could be tolerated. Arsenate interfered at a concentration of 3 mg−1, whereas concentrations of chloride, bromide, iodide, perchlorate, and sulfate of 500–900 mg l−1 could be tolerated. A linear response was obtained between the detection limit of 4 ng 1−1, with a characteristic mass of 130 pg. The RSDs for solutions containing 100 and 200 ng 1−1 selenium were 2.3% and 1.5%, respectively.  相似文献   

10.
Hashemi P  Rahmani Z 《Talanta》2006,68(5):1677-1682
Homocystine was for the first time, chemically linked to a highly cross-linked agarose support (Novarose) to be employed as a chelating adsorbent for preconcentration and AAS determination of nickel in table salt and baking soda. Nickel is quantitatively adsorbed on a small column packed with 0.25 ml of the adsorbent, in a pH range of 5.5–6.5 and simply eluted with 5 ml of a 1 mol l−1 hydrochloric acid solution.

A factorial design was used for optimization of the effects of five different variables on the recovery of nickel. The results indicated that the factors of flow rate and column length, and the interactions between pH and sample volume are significant.

In the optimized conditions, the column could tolerate salt concentrations up to 0.5 mol l−1 and sample volumes beyond 500 ml. Matrix ions of Mg2+ and Ca2+, with a concentration of 200 mg l−1, and potentially interfering ions of Cd2+, Cu2+, Zn2+ and Mn2+, with a concentration of 10 mg l−1, did not have significant effect on the analyte's signal. Preconcentration factors up to 100 and a detection limit of 0.49 μg l−1, corresponding to an enrichment volume of 500 ml, were obtained for the determination of the analyte by flame AAS. Application of the method to the determination of natural and spiked nickel in table salt and baking soda solutions resulted in quantitative recoveries. Direct ETAAS determination of nickel in the same samples was not possible because of a high background observed.  相似文献   


11.
Measurements of the major cations Ca and Mg by the technique of diffusive gradients in thin films (DGTs) were systematically evaluated. The concentration in solution was calculated using Fick’s first law of diffusion from the directly measured flux to the DGT device. A selective cation exchange resin (Bio-Rad Chelex®100), which has been used extensively with DGT for trace metals, such as Cd2+, Cu2+ and Ni2+, was used for this work.

Elution of Ca and Mg from the resin with 1 M HNO3 was very reproducible. Measurements of Ca and Mg concentrations in synthetic solutions agreed well with the theoretical predictions. The negative response on uptake caused by lowered pH was investigated. Uptake was found to decline below pH 5. The capacity of the DGT device for Ca and Mg was also investigated to establish maximum deployment times for given concentrations.

Experiments with filtered and modified lake water show that DGT can be used to measure Ca and Mg when trace metals are present in the solution. An in situ deployment of DGT combined with an ultrafiltration study suggest that the Mg concentration measured by DGT is similar to the concentration found in the fraction <1 kDa.  相似文献   


12.
Docekalová H  Divis P 《Talanta》2005,65(5):1174-1178
The diffusive gradient in thin films (DGT) technique was investigated and used to measure mercury concentration in river water. Mercury ions are covalently bound to amide nitrogen groups of commonly used polyacrylamide, which makes this gel unsuitable as a diffusive medium. In contrast, agarose gel was found as the diffusive gel for mercury measurements. Basic performance tests of agarose DGT verified the applicability of Fick's first law for DGT measurements. Two selective resins, Chelex-100 with iminodiacetic groups and Spheron-Thiol with thiol groups were used. The measured diffusion coefficient in agarose gel was close to that in water. The concentration of mercury in Svitava river measured by DGT with Speron-Thiol resin gel was higher (0.0116 ± 0.0009 μg l−1) than those obtained by Chelex-100 (0.0042 ± 0.0005 μg l−1). Different capture efficiencies of two adsorbents enable to estimate fractions of mercury bonded in different complexes in the river water. The concentrations of mercury found by DGT both Chelex-100 and Speron-Thiol resin gels are much lower than that measured directly in the river water (0.088 ± 0.012 μg l−1). This difference indicates that DGT concerns inorganic ions and labile species only, and that it is not able to include inert organic species and colloids.  相似文献   

13.
Hydrogen peroxide in basic media is proposed as a means for dissolving whole blood samples to be analyzed by electrothermal atomization atomic absorption spectrometry, ET AAS. Approximately 2 g of the whole blood sample were directly weighed in a 150 mL volumetric flask; 3 mL of a NaOH 0.2 mol L−1 solution, two drops of 1-octanol, as an antifoaming agent, and 1 mL of 30% volume hydrogen peroxide were added to the flask to promote oxidation. The solution was then manually shaken and after approximately three minutes of shaking, a clear solution, with no apparent suspended solids or greasy layers, was obtained. Distilled-deionized water was used to complete the volume. Ten μL of the resulting solution along with 10 μL of a solution containing 5000 mg L−1 of NH4H2PO4 and 300 mg L−1 of Mg(NO3)2 as a modifier, were injected into transversely heated graphite tubes for lead determination. Both aqueous standards and standard addition calibration curves produced results not significantly different at a 95% confidence limit level. Accuracy of the measurements was assessed by analysis of the IAEA A-13 (concentration of trace and minor elements in freeze dried animal blood) standard reference material containing 0.18 mg L−1 lead on a dry basis and by means of recovery tests. Analysis of the IAEA A-13 standard produced 0.17 ± 0.02 mg L−1 lead on a dry basis; recovery tests afforded values from 95 to 105%. Ten consecutive measurements of a 5 ppb lead solution gave a characteristic mass of 47.2 pg and a (3S) detection limit of 1.77 μg L−1 Pb. Results obtained from analysis of whole blood samples of volunteer donors covered a lead concentration range between 8 and 21 μg L−1 with a mean value of 11.9 ± 4.7 μg L−1.  相似文献   

14.
Inductively coupled plasma mass spectrometry (ICP-MS) and atomic fluorescence spectrometry (AFS) coupled with gas chromatography (GC) have been evaluated as element specific detectors for the determination of methylmercury in marine samples. Detection limits for methylmercury chloride, obtained using ICP-MS and AFS, were 0.9 and 0.25 pg as Hg, respectively. Methylmercury was determined in marine tissue reference materials IAEA 142 and NIST 8044 mussel homogenate, and DOLT-2 dogfish liver by GC–AFS, with found values of 45±7, 26±4, and 671±41 ng g−1, compared with certified values of 47±4, 28±2, and 693±53 ng g−1. The analyses of IAEA 142 and NIST 8044 were repeated using GC–ICP-MS, with found values of 48±9 and 30±3 ng g−1, respectively. Methylmercury was determined in real samples of ringed seal and beluga whale, with found values of 801±62 and 2830±113 ng g−1, respectively.  相似文献   

15.
Praus P 《Talanta》2004,62(5):977-982
An isotachophoresis (ITP)–capillary zone electrophoresis (CZE) combination was used for the determination of chlorite in drinking waters. No sample preparation is needed and no interfering by other anions in tap water was observed. The reached limits of detection with conductivity detector were 0.012–0.017 mg l−1. By four-fold sample loading with a 30 μl valve, 0.005 mg l−1 of chlorite was determined with R.S.D.=3.3%. The concentrations of 0.05 and 0.20 mg l−1 were measured with R.S.D. of 2.2 and 2.7%, respectively. The recoveries of chlorite from drinking water were 96–106% in the range of 0.02–0.20 mg l−1. The R.S.D. values of migration times (inter-day) were up to 1.3%. The time for analysis is about 15 min.  相似文献   

16.
A new flow injection procedure for an assay of Fe(III) by using salicylate obtained from antipyretic powder, which is a cheap and easily available reagent, is proposed. A red complex was continuously monitored by a laboratory-made green LED colorimeter. A linear calibration was obtained in the range of 1–20 mg Fe l−1 with a detection limit of 0.5 mg Fe l−1 and R.S.D.s of 1.4–5.4% (n=3, for 1–20 mg Fe l−1). The new procedure was applied to assay iron contents in pharmaceutical preparations. The results were in good agreement with those of the USP standard method.  相似文献   

17.
Acrylamide levels over a wide range of different food products were analysed using both liquid chromatography–tandem mass spectrometry (HPLC–MS–MS) and gas chromatography–tandem mass spectrometry (GC–MS–MS). Two different sample preparation methods for HPLC–MS–MS analysis were developed and optimised with respect to a high sample throughput on the one hand, and a robust and reliable analysis of difficult matrices on the other hand. The first method is applicable to various foods like potato chips, French fries, cereals, bread, and roasted coffee, allowing the analysis of up to 60 samples per technician and day. The second preparation method is not as simple and fast but enables analysis of difficult matrices like cacao, soluble coffee, molasses, or malt. In addition, this method produces extracts which are also well suited for GC–MS–MS analysis. GC–MS–MS has proven to be a sensitive and selective method offering two transitions for acrylamide even at low levels up to 1 μg kg−1. For the respective methods the repeatability (n=10), given as coefficient of variation, ranged from 3% (acrylamide content of 550 μg kg−1) to 12% (acrylamide content of 8 μg kg−1) depending on the food matrix. The repeatability (n=3) for different food samples spiked with acrylamide (5–1500 μg kg−1) ranged from 1 to 20% depending on the spiking level and the food matrix. The limit of quantification (referred to a signal-to-noise ratio of 9:1) was 30 μg kg−1 for HPLC–MS–MS and 5 μg kg−1 for GC–MS–MS. It could be demonstrated that measurement uncertainties were not only a result of analytical variability but also of inhomogeneity and stability of the acrylamide in food.  相似文献   

18.
Bürck J  Wiegand G  Roth S  Mathieu H  Krämer K 《Talanta》2006,68(5):1497-1504
Metal parts and residues from machining processes are usually polluted with cutting or grinding oil and have to be cleaned before further use. Supercritical carbon dioxide can be used for extraction processes and precision cleaning of metal parts, as developed at Forschungszentrum Karlsruhe. For optimizing and efficiently conducting the extraction process, in-line analysis of oil concentration is desirable. Therefore, a monitoring method using fiber-optic NIR spectroscopy in combination with PLS calibration has been developed. In an earlier paper we have described the instrumental set-up and a calibration model using the model compound squalane in the spectral range of the CH combination bands from 4900 to 4200 cm−1. With this model only poor prediction results were obtained if applied to technical oil samples in supercritical CO2. In this paper we describe a new calibration model, which was set up for the squalane/carbon dioxide system covering the 323–353 K temperature and the 16–35.6 MPa pressure range. Here, calibration data in the spectral range from 6100 to 5030 cm−1 have been used. This range includes the 5100 cm−1 CO2 band of the Fermi triad as well as the hydrocarbon 1st overtone CH stretching bands, where spectral features of oil compounds and squalane are more similar to each other.

The root mean-squared error of prediction obtained with this model is 4 mg cm−3 for carbon dioxide and 0.4 mg cm−3 for squalane, respectively. The utilizability of the newly developed PLS calibration model for predicting the oil concentration and CO2 density of solutions of technical oils in supercritical carbon dioxide has been tested. Three types of “real world” cutting and grinding oil formulations were used in these experiments. The calibration proved to be suitable for determining the technical oil concentration with an error of 1.1 mg cm−3 and the CO2 density with an error of 6 mg cm−3. Therefore, it seems possible to apply this in-line analytical approach on the basis of a cost-effective and time-saving model compound calibration for the surveillance of real world de-oiling and other extraction process based on supercritical carbon dioxide, and furthermore to establish an automated process termination criterion based on this technique.  相似文献   


19.
A highly sensitive cathodic stripping voltammetric method for the determination of naringin is presented. It is based on the formation and accumulation of two naringin–mercury complexes at the electrode surface, followed by reduction of the surface species during a differential pulse voltammetric scan. The cathodic stripping responses at −0.25 V and −0.42 V, are evaluated with respect to various experimental conditions, such as composition and pH of the supporting electrolyte, naringin concentration, accumulation potential and preconcentration time. The new method is suitable for the determination of naringin concentrations between 0.1 mg l−1 (1.72×10−7 mol l−1) and 40 mg l−1 (6.88×10−5 mol l−1). A 3σ limit of detection of 32 μg l−1 (55 nmol l−1) can be reached. The relative standard deviation (r.s.d.) is <1.5%. Recovery experiments yielded a mean recovery of 97% (r.s.d.=4.1%). The application of the procedure to the selective determination of naringin in grapefruit juice is demonstrated.  相似文献   

20.
Iridium, palladium, rhodium and ruthenium, thermally deposited on the platform, were investigated as permanent modifiers for the determination of mercury in ash, sludge, marine and river sediment reference materials, ground to a particle size of 50 μm, using solid sampling graphite furnace atomic absorption spectrometry. A total mass of 250 μg of each modifier was applied using 25 injections of 20 μl of modifier solution (500 mg l−1), and executing a temperature program for modifier conditioning after each injection. The performance of palladium was found to be most consistent, taking the characteristic mass as the major criterion, resulting in an excellent correlation between the measured integrated absorbance values and the certified mercury contents. Mercury was found to be lost in part from aqueous solutions during the drying stage in the presence of all the investigated permanent modifiers, as well as in the presence of the palladium and magnesium nitrates modifier added in solution. A loss-free determination of mercury in aqueous solutions could be reached only after the addition of potassium permanganate, which finally made possible the use of aqueous standards for the direct analysis of solid samples. A characteristic mass of 55–60 pg Hg was obtained for the solid samples, using Pd as a permanent modifier, and also in aqueous solutions after the addition of permanganate. The results obtained for mercury in ash, sludge and sediment reference materials, using direct solid sapling and calibration against aqueous standards, as well as the detection limit of 0.2 mg kg−1 were satisfactory for a routine procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号