首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The stabilization and flocculation behaviour of colloidal latex particles covered with cationic polyelectrolytes (PE) is studied with photon correlation spectroscopy and zetapotential measurements. Diffusion coefficients, flocculation rate constants and zetapotentials have been determined as a function of adsorbed amount of cationic poly-(diallyl-dimethyl-ammoniumchloride) (PDADMAC) of different molar masses and of statistic copolymers of DADMAC and N-methyl-N-vinyl-acetamide (NMVA) of various compositions in water and at high ionic strength. Flocculation by van der Waals attraction can be observed if the zetapotential is low. This occurs, if the surface charge is screened by the oppositely charged cations. Furthermore, in the case of adsorption of high molecular polycations mosaic flocculation occurs if the adsorbed amount is low. At high ionic strength, flocculation takes place if the adsorbed amount is below the adsorption plateau. If the adsorption plateau is reached the suspensions become stabilized. In water the charge reversal at full coverage leads to electrosteric stabilization both with low and high molar mass polycations. At high ionic strength only polycations with high molar mass are able to stabilize the suspension. If a certain molar mass of the polycation is exceeded, steric stabilization of the suspension occurs due to the formation of long adsorbed PE tails and their osmotic repulsion. The layer thicknesses are determined as a function of the molar mass. Received: 4 July 2000/Accepted: 18 August 2000  相似文献   

2.
In order to describe the influence of cationic polyelectrolytes on flocculation of disperse systems the adsorption of poly (diallyldimethylammonium chloride) (PDADMAC) onto silica, mica and acidic polymer latex was investigated. The plateau value of the adsorption isotherms grows with increasing surface charge density of the substrates and electrolyte concentration. The adsorbed layer of the polycation was characterized by zeta potential measurements with KCl solutions of constant ionic strength and varied pH. The zero point of the charge as well as the shape of the zeta potential–pH plot depends on the coverage of the surface with polycations. For fully covered substrates the zero point of the charge as well as the pKA and pKB values calculated by a stochastic search programme are independent of the substrate. Maximum flocculation was observed at about 30% of the plateau value of the adsorption isotherms.  相似文献   

3.
The adsorption of cationic polyelectrolytes on colloidal silica-particles is investigated. The polyelectrolytes poly(diallyl-dimethyl-ammoniumchloride) PDADMAC of different molar mass have been used. The adsorbed amount is influenced by the ionic strength and pH of the suspension and the molar mass of the macromolecule. The adsorption determines the zetapotential of the covered particles. The electrostatic interaction between the particles as well as the structure of the adsorbed polyelectrolytes play an important role in the stabilization and flocculation behaviour of the polyelectrolyte covered suspensions.  相似文献   

4.
Conformations of cationic polyelectrolytes (PEs), a weak poly(2-vinylpyridine) (P2VP) and a strong poly(N-methyl-2-vinylpyridinium iodide) (qP2VP), adsorbed on mica from saline solutions in the presence of counterions of different valences are studied using in situ atomic force microscopy (AFM). Quantitative characteristics of chain conformations are analyzed using AFM images of the adsorbed molecules. The results of the statistical analysis of the chain contour reveal collapse of the PE coils when ionic strength is in a range from tens to hundreds of millimoles per kilogram and re-expansion of the coils with a further increase of ionic strength up to a region of the saturated saline solutions. The competition between monovalent and multivalent counterions simultaneously present in solutions strongly affects conformations of PE chains even at a very small fraction of multivalent counterions. Shrinkage of PE coils is steeper for multivalent counterions than for monovalent counterions. However, the re-expansion is only incremental in the presence of multivalent counterions. Extended adsorbed coils at low salt concentrations and at very high concentrations of monovalent salt exhibit conformation corresponding to a 2D coil with 0.95 fraction of bound segments (segments in "trains") in the regime of diluted surface concentration of the PE. Shrunken coils in the intermediate range of ionic strength resemble 3D-globules with 0.8 fraction of trains. The incrementally re-expanded PE coils at a high ionic strength remain unchanged at higher multivalent salt concentrations up to the solubility limit of the salt. The formation of a strong PE complex with multivalent counterions at high ionic strength is not well understood yet. A speculative explanation of the observed experimental result is based on possible stabilization of the complex due to hydrophobic interactions of the backbone.  相似文献   

5.
The adsorption of two cationic amphiphilic polyelectrolytes, which are copolymers of two charged monomers, triethyl(vinylbenzyl)ammonium chloride and dimethyldodecyl(vinylbenzyl)ammonium chloride (which is the amphiphilic one) with different contents of amphiphilic groups (40% (40DT) and 80% (80DT)), onto the hydrophilic silica-aqueous solution interface has been studied by in situ null ellipsometry and tapping mode atomic force microscopy (AFM). Adsorption isotherms for both polyelectrolytes were obtained at 25 degrees C and at different ionic strengths, and the adsorption kinetics was also investigated. At low ionic strength, thin adsorbed layers were observed for both polyelectrolytes. The adsorption increases with polymer concentration and reaches, in most cases, a plateau at a concentration below 50 ppm. For the 80DT polymer, at higher ionic strength, an association into aggregates occurs at concentrations at and above 50 ppm. The aggregates were observed directly by AFM at the surface, and by dynamic light scattering in the solution. The adsorption data for this case demonstrated multilayer formation, which correlates well with the increase in viscosity with the ionic strength observed for 80DT.  相似文献   

6.
The adsorption of cetylpyridinium chloride (CPC) and sodium dodecylbenzenesulfonate (SDBS) onto a ceramic glaze mixture composed of limestone, feldspar, quartz, and kaolin has been investigated. Both adsorption isotherms and the average particle zeta potential have been studied in order to understand the suspension stability as a function of pH, ionic strength, and surfactant concentration. The adsorption of small amounts of cationic CPC onto the primarily negatively charged surfaces of the particles at pH 7 and 9 results in strong attraction and flocculation due to hydrophobic interactions. At higher surfactant concentrations a zeta potential of more than +60 mV results from the bilayered adsorbed surfactant, providing stability at salt concentrations < or = 0.01 M. At 0.1 M salt poor stability results despite substantial zeta potential values. Three mechanisms for SDBS adsorption have been identified. When anionic SDBS monomers either adsorb by electrostatic interactions with the few positive surface sites at high pH or adsorb onto like charged negative surface sites due to dispersion or hydrophobic interactions, the magnitude of the negative zeta potential increases slightly. At pH 9 this increase is enough to promote stability with an average zeta potential of more than -55 mV, whereas at pH 7 the zeta potential is lower at about -45 mV. The stability of suspensions at pH 7 is additionally due to steric repulsion caused by the adsorption of thick layers of neutrally charged Ca(DBS)2 complexes created when the surfactant interacts with dissolved calcium ions from the calcium carbonate component.  相似文献   

7.
The effect of polymer adsorption kinetics and ionic strength on the dynamics of particle flocculation was quantified using a model system consisting of precipitated calcium carbonate (PCC) and cationic polyacrylamide (CPAM) at a low shear rate. All early flocculations detectable by a photodispersion analyzer (PDA) happened in nonequilibrium polymer adsorption regimes. We observed discrepancies in flocculation rates with the surface coverage theory, which is based on a simple monolayer adsorption model, in both early and late flocculation stages. For instance, the same amount of adsorbed CPAM reached at different polymer doses demonstrated different flocculating capabilities. This highlighted the importance of polymer adsorption kinetics upon flocculation. The transient conformation of the adsorbed CPAM during the kinetic process sometimes even superceded the adsorbed amount in the determination of PCC flocculation. Both antagonistic and synergetic effects of increased ionic strength on the CPAM-induced PCC aggregation were observed during early flocculation. However, late-stage PCC flocculation shared some similarities, irrespective of polymer dose and ionic strength. Despite the decreased amount of adsorbed polymer from the increased ionic strength, the combination of CPAM and salt, at certain concentrations, demonstrated a synergy to promote PCC aggregation more efficiently than the same amount of the respective components.  相似文献   

8.
Successive adsorption of oppositely charged polyelectrolytes, namely, cationic and anionic acrylamide copolymers, on a solid phase surface from solutions with high ionic strength is investigated. The constants of the Freundlich equation are calculated for the adsorption of different polymers. The interrelation between the adsorption values of polymers and their flocculation activity with respect to clay-salt suspensions is determined. The successive adsorption of oppositely charged polyelectrolytes strongly affects the flocculation due to the formation of polyelectrolyte complexes on the surface of clay particles. The mechanism for complexation is proposed.  相似文献   

9.
The adsorption of polyelectrolyte (PE) multilayers and complexes, obtained from both high- and low-charge polyelectrolytes, was studied on silica and on cellulose model surfaces by quartz crystal microbalance with dissipation (QCM-D). The film properties acquired with the different strategies were compared. When polyelectrolytes were added on an oppositely charged surface in sequence to form multilayers both the change in frequency and dissipation increased. The changes in frequency and dissipation were clearly higher if low-charge PEs were used in the multilayer formation. The substrate, silica or cellulose, did not affect the adsorption behaviour of low-charge PEs and only minor differences were seen in the adsorbed amounts and changes in dissipation of high-charge PEs between SiO2 and cellulose. The complexes formed by low-charge PEs had higher changes in frequency and dissipation at low ionic strength on both surfaces, while the complexes formed from high-charge polyelectrolytes adsorbed more at high salt concentration. The complexes of low-charge polyelectrolytes adsorbed more on silica, while the complexes formed by high-charge PEs formed thicker layers on cellulose. The charge ratio had a significant effect on the adsorption and the highest changes in frequency and dissipation were obtained in the anionic/cationic charge ratio of 0.5–0.6. Generally, the multilayers and complexes formed by low-charge polyacrylamides adsorbed highly and formed rather thick layers on both surfaces, unlike the high-charge PEs which formed thin layers using either one of the addition techniques.  相似文献   

10.
The effect pH, ionic strength (KCl concentration), weakly and medium charged anionic and cationic polyelectrolytes (PEs) as well as their binary mixtures on the electrokinetic potential of silica particles as a function of the polyelectrolyte/mixture dose, its composition, charge density (CD) of the PE, and way of adding the polymers to the suspension has been studied. It has been shown that addition of increasing amount of anionic PEs increases the absolute value of the negative zeta-potential of particles at pH > pH isoelectric point (IEP = 2.5); this increase is stronger the charge density of the polyelectrolyte is higher. Adsorption of cationic polyelectrolytes at these pH values gives a significant decrease in the negative ζ-potential and overcharging the particles; changes in the ζ-potential are more pronounced for PE samples with higher CD. In mixtures of cationic and anionic PE at pH > pHIEP, the ζ-potential of particles is determined by the adsorbed amount of the anionic polymer independently of the CD of PEs, the mixture composition and the sequence of addition of the mixture components. Unexpectedly, the ζ-potential of silica at pH = 2.1, i.e. < pHIEP, turned out to be positive in the presence of both anionic PE and cationic + anionic PE mixtures. This is explained by formation (and adsorption onto positively charged silica surface) of pseudo-cationic PEs from anionic ones due to transfer of protons from the solution to the amino-group of the anionic polymer. Considerations about the role of coulombic and non-coulombic forces in the mechanism of PE adsorption are presented.  相似文献   

11.
The effect of cationic and anionic surfactants, as well as cationic and anionic polyelectrolytes (PE), their binary mixtures on the electrokinetic potential of monodisperse carboxylated polystyrene (PS) particles as a function of the reagents dose, pH, the charge density (CD) of polymers, the surfactant/PE and binary PE mixture composition, and sequence of components addition to the suspension has been studied. It has been shown that addition of increasing amount of anionic surfactant/polyelectrolytes increases the absolute value of the negative zeta-potential of PS particles; this increase is stronger the CD of the PE and pH of the system are higher. Adsorption of cationic surfactant/polyelectrolytes leads to a significant decrease in the negative ζ-potential and to overcharging the particles; changes in the ζ-potential are more pronounced for PE samples with higher CD and for suspensions with lower pH values. In mixtures of cationic and anionic PE, in a wide range of mixture composition, the ζ-potential of particles is determined by the adsorbed amount of the anionic polymer independently of the CD of PEs and the sequence of addition of the mixture components. The isoelectric point of the surface is reached at the adsorbed amount of positive charges of PE that is approximately equal to the surface CD of particles. The laws observed were explained by features of macromolecules conformation in adsorbed mixed PE layers. Considerations about the role of coulombic and non-coulombic forces in the mechanism of anionic/cationic PE adsorption are presented.  相似文献   

12.
In order to elucidate the mechanisms of flocculation by polymer mixtures, the effect of adsorption of non-ionic poly(ethylene oxide) — PEO, two samples of strongly (SNF FO 4800) and medium charged (SNF FO 4350) cationic and two samples of medium (SNF AN 935) and weakly charged (SNF AN 905) anionic polyelectrolytes (PE) as well as their binary mixtures on the electrokinetic potential of bentonite and kaolin particles has been studied. It is shown that in the presence of PEO-anionic/cationic polymer mixture, the electrokinetic potential of particles is determined by the adsorption of the polyelectrolyte; neither cationic nor anionic segments can be displaced by the non-ionic polymer. In mixtures of cationic and anionic polyelectrolytes, the ζ-potential of particles is determined by the adsorbed amount of anionic polymer independently of the charge density of PE and way of addition of the mixture components to the suspension, i.e. (1) first adding the cationic polymer, then the anionic one, or (2) first adding the anionic polymer then the cationic one, or (3) adding an increasing amount of pre-prepared 1: 1 mixture. The highest absolute ζ-potential values are observed for pH 7.5 when the surface of bentonite or kaolin particles is “purely” negatively charged and the anionic PE layer is most extended because of few contacts to the surface. With decreasing the pH, the (negative) ζ-potential of particles decreases due to appearance of a small amount of positive charges on the surface that bond an increasing amount of negative segments and results in shrinking of the adsorbed layer of the anionic PE. It is shown also that the electrokinetic potential of particles in anionic and cationic PE mixtures at all studied pH (4, 5, and 7.5) depends on the spatial distribution of negatively charged segments near the surface. The regularities observed are explained by formation of long loops and tails of anionic segments on the surface because of the small number of contacts to the surface; the cationic polyelectrolyte forms on the surface a thin layer with a big number of contacts and which is hidden behind the more extended anionic polymer layer.  相似文献   

13.
The flocculation behavior of anionic and cationic latex dispersions induced by addition of ionic surfactants with different polarities (SDS and cetyltrimethylammonium bromide (CTAB)) have been evaluated by rheological measurements. It was found that in identical polar surfactant systems with particle surfaces of SDS + anionic lattices and CTAB + cationic lattices, a weak and reversible flocculation has been observed in a limited concentration region of surfactant, which was analyzed as a repletion flocculation induced by the volume-restriction effect of the surfactant micelles. On the other hand, in oppositely charged surfactant systems (SDS + cationic lattices and CTAB + anionic lattices), the particles were flocculated strongly in a low surfactant concentration region, which will be based on the charge neutralization and hydrophobic effects from the adsorbed surfactant molecules. After the particles stabilized by the electrostatic repulsion of adsorbed surfactant layers, the system viscosity shows a weak maximum again in a limited concentration region. This weak maximum was influenced by the shear rate and has a complete reversible character, which means that this weak flocculation will be due to the depletion effect from the free micelles after saturated adsorption.  相似文献   

14.
The conformation and structural dimensions of α-lactalbumin (α-La) both in solution and adsorbed at oil-water interfaces of emulsions were investigated using synchrotron radiation circular dichroism (SRCD) spectroscopy, front-face tryptophan fluorescence (FFTF) spectroscopy, and dual polarization interferometry (DPI). The near-UV SRCD and the FFTF results demonstrated that the hydrophobic environment of the aromatic residues located in the hydrophobic core of native α-La was significantly altered upon adsorption, indicating the unfolding of the hydrophobic core of α-La upon adsorption. The far-UV SRCD results showed that adsorption of α-La at oil-water interfaces created a new non-native secondary structure that was more stable to thermally induced conformational changes. Specifically, the α-helical conformation increased from 29.9% in solution to 45.8% at the tricaprylin-water interface and to 58.5% at the hexadecane-water interface. However, the β-sheet structure decreased from 18.0% in solution to less than 10% at both oil-water interfaces. The DPI study showed that adsorption of α-La to a hydrophobic C18-water surface caused a change in the dimensions of α-La from the native globule-like shape (2.5-3.7 nm) to a compact/dense layer approximately 1.1 nm thick. Analysis of the colloidal stability of α-La stabilized emulsions showed that these emulsions were physically stable against droplet flocculation at elevated temperatures both in the absence and in the presence of 120 mM NaCl. In the absence of salt, the thermal stability of emulsions was due to the strong electrostatic repulsion provided by the adsorbed α-La layer, which was formed after the adsorption and structural rearrangement. In the presence of salt, although the electrostatic repulsion was reduced via electrostatic screening, heating did not induce strong and permanent droplet flocculation. The thermal stability of α-La stabilized emulsions in the presence of salt is a combined effect of the electrostatic repulsion and the lack of covalent disulfide interchange reactions. This study reports new information on the secondary and tertiary structural changes of α-La upon adsorption to oil-water interfaces. It also presents new results on the physical stability of α-La stabilized emulsions during heating and at moderate ionic strength (120 mM NaCl). The results broaden our understanding of the factors controlling protein structural change at emulsion interfaces and how this affects emulsion stability.  相似文献   

15.
We consider the interaction of colloidal spheres in the presence of mono-, di-, and trivalent ions. The colloids are stabilized by electrostatic repulsion due to surface charges. The repulsive part of the interaction potential Ψ(d) is deduced from precise measurements of the rate of slow coagulation. These "microsurface potential measurements" allow us to determine a weak repulsion in which Ψ(d) is of the order of a few k(B)T. These data are compared to ζ potential measured under similar conditions. At higher concentrations both di- and trivalent counterions accumulate at the very proximity of the particle surface leading to charge reversal. The salt concentration c(cr) at which charge reversal occurs is found to be always above the critical coagulation concentration c(ccc). The analysis of Ψ(d) and of the ζ potential demonstrates, however, that adsorption of multivalent counterions starts far below c(cr). Hence, colloid stability in the presence of di- and trivalent ions cannot be described in terms of a DLVO ansatz assuming a surface charge that is constant with regard to the ionic strength.  相似文献   

16.
The conformation of cationic polyelectrolytes preadsorbed on macroscopic silica surfaces was studied before and after addition of colloidal silica (CS) and compared to the fixation capacity of CS. The study included two polyelectrolytes of equal charge density, cationic polyacrylamide and cationic dextran. Adsorbed amounts were determined with stagnation point adsorption reflectometry (SPAR) and quartz crystal microgravimetry (QCM). Unsaturated layers of polyelectrolyte were formed in SPAR by stopping the adsorption at a fractional coverage relative to saturation adsorption. These layers were probed by secondary saturation adsorption of colloidal silica (CS). At low salt concentrations a high fractional coverage of polyelectrolyte was required to attain adsorption of CS, while significant adsorption of CS was found also for low fractional coverages of polyelectrolyte at salt concentrations above 10 mM NaCl. Saturation adsorption of cationic polyacrylamide (CPAM) and cationic dextran (Cdextran) onto the silica surface was found to be similar, while the secondary adsorption of CS was significantly higher onto preadsorbed CPAM compared with Cdextran. The QCM and SPAR data together indicated that the adsorbed layer of Cdextran was thinner than CPAM, and that a loose, expanded layer was formed after adsorption of CS on CPAM but not on Cdextran.  相似文献   

17.
Mesoporous TiO(2) nanocontainers (NCs) covered with polyelectrolyte multilayers were adsorbed on self-assembled monolayer (SAM) modified gold substrates at different values of pH and ionic strength. The adsorption process was followed in situ by means of a quartz crystal microbalance (QCM) and the morphology of the adsorbate was investigated by means of FE-SEM images taken of the substrates after each adsorption process. Deposition could be achieved if either the particles and the surface had opposite charge, or if the salt concentration was sufficiently high, reducing the repulsion between the spheres and the surface. In the latter case the adsorption kinetics could be explained in the context of the DLVO-theory. Using conditions of like charges, one has a means to control the speed of deposition by means of ionic strength. However, interparticle aggregation and cluster deposition on the surface were observed at high ionic strength. Such conditions have to be avoided to obtain a uniform deposition of separated nanocontainers on the surface.  相似文献   

18.
A theory has been developed for the adsorption of polyelectrolytes on charged interfaces from an aqueous salt solution. This adsorption is determined by the electrical charge density of the polyelectrolyte, the adsorption energy, the salt concentration, the molecular weight, solubility, flexibility, and concentration of polymer. The theory relates these parameters to the properties of the adsorbed polymer layer, i.e., the amount of polymer adsorbed, the fraction of the adsorbent interface covered, the fraction of the segments actually adsorbed on the interface versus the fraction of the segments in the dangling loops, the final surface charge density, and the thickness of the adsorbed layer. As polyelectrolyte adsorption should resemble nonionic polymer adsorption at high ionic strength of the solution or low charge density on the polymer, this work is an extension of the nonionic polymer adsorption theory to polyelectrolyte adsorption. The following effects are taken into account: (a) the conformational change upon adsorption of a coil in solution into a sequence of adsorbed trains interconnected by loops dangling in solution; (b) the interactions of the adsorbed trains with the interface and with each other; (c) the interaction of the dangling loops with the solvent; (d) the change in surface charge density of the adsorbent due to adsorption of charged trains and the accompanying changes in the electrical double layer which contains “small” ions as well as charged loops; (e) the (induced) dipole interaction of the adsorbed trains with the charged adsorbent interface. The theory is worked out for low potentials (Debye—Hückel approximation); in Appendix B an outline of a more complete treatment is given. The predicted adsorption isotherms have the experimentally observed high-affinity character. A relation between the adsorption energy, the surface charge density on the adsorbent, the degree of dissociation of the polymer, and the salt concentration predicts the conditions under which no adsorption will occur. For adsorbent and polymer carrying the same type of charge (both positive or both negative) the adsorption is predicted to decrease with increased charge density on polymer or adsorbent and to increase with salt concentration. If adsorbent and polymer carry different type charges, the adsorption as a function of the degree of dissociation, α, goes through a maximum at a relatively low value of α and, depending on the adsorption energy, an increase in the salt concentration can then increase or decrease the adsorption. At finite polymer concentration in solution the number of adsorbed segments and the fraction of the interface covered practically do not change with an increase in polymer concentration, whereas the total number of polymer molecules adsorbed increases slightly, as does the average fraction of segments in loops. The experimental results for polyelectrolyte adsorption have been reviewed in general and, as far as data are available, the predictions of the theory seem to follow the experimentally observed trends quite closely, except for the thickness of the adsorbed layer. This thickness is systematically overestimated by the theory and two reasons for this are given. The theoretical model implies a not too low ionic strength of the solution. Extrapolation of results to solutions of very low ionic strength is not warranted.  相似文献   

19.
The kinetics of the adsorption of a cationic polymer flocculant onto negatively charged polystyrene latex (PSL) particles were measured by means of electrophoresis as a function of the molecular weight of the polyelectrolyte and the ionic strength of the solution. In the experiment, the dispersion of bare PSL particles was mixed with a polyelectrolyte solution by means of end-over-end rotation in which the mixing intensity was evaluated in terms of the collision frequency between the colloidal particles. The rate of electrophoretic mobility of a PSL particle, which remained as a singlet, was measured against the mixing steps, which was equivalent to the time elapsed after the onset of flocculation. The shape of the kinetic curves is typical: a linear increase for a short period followed by a plateau, implying the saturation of the colloidal surface by the adsorbed polyelectrolyte. In the case of low ionic strength, the plateau value was dependent on the molecular weight of the polyelectrolyte. That is, a lower plateau value was detected when the molecular weight of the polyelectrolyte was smaller and its concentration was lower. However, the amount of adsorption was kinetically controlled only for the case of higher molecular weight. In the case of high ionic strength, the plateau value of electrophoresis was constant, regardless of the polyelectrolyte concentration and molecular weight. These data will ultimately be useful in further analysis of the flocculation behavior of colloidal particles with a polyelectrolyte.  相似文献   

20.
The ionic strength dependence of humic acid (HA) adsorption on magnetite (Fe3O4) was investigated at pH 5, 8 and 9, where variable charged magnetite is positive, neutral and negative, respectively. The adsorption studies revealed that HA has high affinity to magnetite surface especially at lower pH, where interacting partners have opposite charges. However, in spite of electrostatic repulsion at pH 9 notable amounts of humate are adsorbed. Increasing ionic strength enhances HA adsorption at each pH due to charge screening. The dominant interaction is probably a ligand-exchange reaction, nevertheless the Coulombic contribution to the organic matter accumulation on oxide surface is also significant under acidic condition. The results from size exclusion chromatography demonstrate that the smaller size HA fractions enriched with functional groups are adsorbed preferentially on the surface of magnetite at pH 8 in dilute NaCl solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号