首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The fluorescent probe lucigenin was incorporated in poly(vinyl chloride) (PVC) gels, and laser scanning confocal microscopy (LSCM) was used to clarify the internal structures of the gels. From the two-dimensional and three-dimensional information by LSCM, we first observed the internal structure of the PVC gel at a wet status, where the PVC gels comprised a polymer-rich phase and a polymer-poor phase uniformly with a three-dimensional network structure. After an electric field was applied, an effect of the electric field resulted in the change of internal structure in the gels. The polymer-poor phase moved from the cathode to the anode and the polymer-rich phase formed linelike arrangement between electrodes due to the attraction force. On the other hand, the freeze-dried PVC gels with/without in-situ dc voltage casting were particularly fabricated to confirm above results by the field emission scanning electron microscopy (FE-SEM). It was found that many craters remained on the surface of the gel near the anode due to sublimation in freeze-drying. This phenomenon did not appear on the surface near the cathode. The results of in-situ dc voltage casting also suggested that a substantial amount of polymer-poor phase was moved and fixed at the anode. Thus, results of both LSCM and in-situ dc voltage casting corresponded to the effect of electric field on PVC gels and provided a convincing evidence for the interpretation of the deformation mechanism of PVC gel actuators by an applied electric field.  相似文献   

2.
Structural deformation of phase-separated methylsiloxane gel under the influence of a surface has been studied. Competitive wetting of siloxane gel phase on a surface during phase formation is found to significantly affect the final morphology in a confined space. When the spinodal wavelength is sufficiently shorter than the size of the available space, a uniform bicontinuous structure forms in confined geometry. However, gel skeletons in the vicinity of a surface are elongated with decreasing size of the space, and finally when the size of the space becomes shorter than the spinodal wavelength, all the gel phase wets on a surface, showing a "wetting transition". Homogeneous bicontinuous methylsiloxane gels were successfully prepared, avoiding such structural deformation, in a long cylindrical fused silica capillary and used for capillary HPLC. The capillary gels exhibited excellent separation efficiency of nitrobenzenes and it was found that the surface character can be altered by incorporating surfactants, which will enable more advanced and extended control of surface character, depending on the analytes.  相似文献   

3.
When bicontinuous gels are prepared via sol-gel method in a 2-dimensionally (2D) confined space, the gel skeletons in the vicinity of interface of a mold are elongated perpendicular to the interface. This phenomenon was attributed to the dynamic wetting of polymerizing siloxane phase onto the interface of the mold under gravity. In this paper, we report the successful preparation of monolithic columns with an oriented pillar structure in a variety of 2D confined spaces. Starting from a solution, which consists of methyltrimethoxysilane (MTMS), the macroporous structure is prepared in situ by a completely spontaneous process. In the oriented pillar structure, bicontinuous siloxane skeletons deformed or disappeared and most pillars are oriented along the direction of gravity. Gel morphologies with the pillar structure were examined by scanning electron microscopy (SEM) and laser scanning confocal microscopy (LSCM). Geometrical information on gel morphologies was numerically derived from the obtained 3D LSCM images.  相似文献   

4.
The phase separation behavior of gelling systems containing the mixture of 3-functional and 4-functional alkoxysilanes has been investigated. The relation between the starting composition and resultant macroporous morphology was examined using tetramethoxysilane (TMOS) and vinyltrimethoxysilane (VTMS) as starting alkoxysilanes, formamide (FA) as an additive, under an acidic condition. Up to TMOS:VTMS molar ratio of 0.5:0.5, the phase relation remained almost unchanged from that of pure TMOS system which exhibits morphology with well-defined co-continuous macropores in a very limited concentration region. On the VTMS-rich side typically TMOS:VTMS = 0.2:0.8, however, the co-continuous macroporous morphology was obtained in a broader composition range than those of either pure TMOS or VTMS system. A dome-like pseudo binary region was obtained with the two-phase region extending toward FA-rich direction. The domain size and pore volume of the gels with macroporous morphology could be controlled by alkoxide:water ratio and total solvent fraction, respectively.  相似文献   

5.
Abstract

Co-continuous structures can be regarded as the coexistence of at least two continuous structures within the same volume. Blends with co-continuous structures may combine the properties of both components in a favorable way, for example, mechanical moduli. This review article deals with the identification, characterization, and properties of co-continuous structures as well as with the development of co-continuous structures during the melt blending process. Co-continuous structures usually can be formed within a composition region about the phase inversion composition, which mainly depends on the viscosity ratio. On the other hand, co-continuous structures can be found independent of composition as intermediate stages during the initial state of morphology development and during phase inversion process in blends in which the component finally forming the dispersed phase forms the matrix in early mixing states. In addition, even at low volume fractions of one component, stable co-continuous morphologies can be created using suitable processing conditions, forming long elongated interconnected structures that do not break up because of the flow. The interfacial tension plays an important role for the stability; a lower interfacial tension leads to broader composition ranges of co-continuous structures. Another factor enhancing the formation and stability of co-continuous structure is melt yield stress of one or both components of blends. In addition, this article reviews the stability of co-continuous structures during further processing and the influence of compatibilization on the structure formation and stability. Subsequently, two models describing the co-continuous composition range are discussed.  相似文献   

6.
The catalytic performance of triazolyl‐based molecular gels was investigated in the Huisgen 1,3‐dipolar cycloaddition of alkynes and azides. Low‐molecular‐weight gelators derived from l ‐valine were synthesized and functionalized with a triazole fragment. The resultant compounds formed gels either with or without copper, in a variety of solvents of different polarity. The gelators coordinated CuI and exhibited a high catalytic activity in the gel phase for the model reaction between phenylacetylene and benzylazide. Additionally, the gels were able to participate in autocatalytic synthesis and the influence of small structural changes on their performance was observed.  相似文献   

7.
In this work, the structure development in immiscible polymer blends in confined geometries is systematically investigated. Poly(dimethylsiloxane)/poly(isobutylene) blends with a droplet-matrix structure are subjected to simple shear flows. The confined environment is created by using a Linkam shearing cell in which the gap is systematically decreased to investigate the transition from "bulk" behavior toward "confined" behavior. Small-angle light scattering experiments in a confinement, which have not yet been reported in the literature, and also microscopy are used to observe the morphology development during steady-state shearing and relaxation. These experiments indicate that the size and relaxation of single droplets in a confined environment are still governed by the relations that describe the structure development in bulk situations. Yet, depending on the applied shear rates and blend concentrations, the droplets organize in superstructures such as pearl necklaces or extended superstrings in a single layer between the plates. These structures are stable under flow. To observe a single layer, a critical ratio of droplet size to gap spacing is required, but this ratio is clearly below the one already reported in the literature.  相似文献   

8.
The geometrical properties of co-continuous macroporous silica monoliths have been studied by laser scanning confocal microscopy (LSCM) and a comparison has been made with those obtained by conventional mercury intrusion method. Tetrahedral skeleton model (TMS), which mimics the gel skeleton shape of monoliths, was compared with real monoliths in terms of macropore and porosity using the geometrical parameters extracted from the LSCM observations. Liquid flow behavior through the macroporous silica monoliths was examined in comparison with those simulated using TSM, based on the geometrical properties obtained from LSCM observations. Heterogeneity in macropore topology and connectivity in pores and skeletons are suggested to contribute to the improvement of the model structure for macroporous monoliths.  相似文献   

9.
Poly(N-isopropylacrylamide) (PNIPAAm) hydrogel exhibits a response to external temperature variation and shrinks in volume abruptly as the temperature is increased above its lower critical solution temperature. It has great potential applications in biomedical fields. A rapid response rate is essential, especially when this material is designed as an on-off switch for targeted drug delivery. However, due to the appearance of a thick, dense skin layer on the hydrogel surface during the shrinking process, the deswelling rate of conventional PNIPAAm gels is low. In this article, a novel method is proposed to modify the surface morphology of PNIPAAm gel, in which the swollen gels are frozen at low temperature (-20 degrees C). The scanning electron micrographs revealed that a fishnet-like skin layer appeared on the surfaces of the cold-treated gels. Dramatically rapid deswelling was achieved with the cold-treated gels since the fishnet-like structure with numerous small pores prevented the formation of a dense, thick skin layer during the deswelling process, which commonly occurs in normal PNIPAAm hydrogels. Prolonging the cold treatment from 1 day to 10 days resulted in a slightly higher deswelling rate. Rearrangement of the hydrogel matrix structure during the freezing process might contribute to the formation of the fishnet-like skin layer. The water uptake of the hydrogels increased nearly in proportion to the square root of time, indicating that the reswelling rate of hydrogels was controlled predominantly by water diffusion into the network. However, there were no significant differences in the equilibrated swelling ratio and reswelling kinetics at room temperature (22 degrees C) between normal gels and cold-treated gels, which implied that cold treatment did not change bulk porosity and gel tortuosity much.  相似文献   

10.
11.
We developed an atomistic model of octamethylcyclotetrasiloxane (OMCTS) liquid confined within the nanospace between two flat mica surfaces. Molecular dynamics simulation was carried out for the liquidlike state where OMCTS liquid is not frozen, while forming molecular layers parallel to the surface. With the aid of a layer by layer analysis of the intra- and interlayer microscopic structures and the dynamics, it is found that the difference in the properties of the inner layers and the bulk liquid are relatively small in spite of the clear differences in the structure. This leads to the conclusion that the layered structure itself is an appearance of the microscopic structure that already exists in the bulk liquid. The most striking difference from the bulk liquid is mainly seen in the contact layer, where characteristic molecular orientations that are not seen in the crystalline phase appeared, and the dynamics of the liquid becomes 2-3 orders of magnitude slower than that of the bulk.  相似文献   

12.
Amphiphilic guanidinium alkylbenzenesulfonates (GCnBS; n = number of carbons in the alkyl chain) exhibited lyotropic behavior in aqueous and organic solvents. The GCnBS compounds formed gel-like phases in certain cyclic organic solvents (e.g. p-xylene, cyclohexane) through the formation of swollen interdigitated lamellar phases reinforced by hydrogen bonding between the guanidinium ions and sulfonate moieties. This behavior was not observed for the homologous sodium alkylbenzenesulfonates, indicating that hydrogen bonding, mediated by the guanidinium (G) ion, was required for gel formation. Infrared spectroscopy unambiguously demonstrated the existence of the quasi-hexagonal hydrogen-bonded sheet typically adopted by G ions and the sulfonate groups in layered, solvent-free crystalline phases of the compounds, supporting lamellar structures in the gels. Small-angle X-ray scattering analysis of these gels revealed GCnBS lamellar phases with interlayer spacings (d) that increased with increasing temperature, consistent with increased absorption of solvent by the nonpolar regions of the gelator. At the lower gelator concentrations, the increase in d-spacing achieved at the higher temperatures exceeded the sum of the alkylbenzene chain lengths, suggesting either long-range interactions between the GS sheets or undulation stabilized lamellae, which have been reported in aqueous lamellar gels. The GCnBS compounds also formed lyotropic phases in water, but the phase behavior was more complex than that of the organogels. The rheology suggested gel-like behavior associated with entangled worm-like micelles at these higher concentrations. These lyotropic phases were reminiscent of crystalline layered and tubular architectures exhibited by various guanidinium organomonosulfonate compounds. These lyotropic phases expand the liquid crystal behavior observed for GS compounds beyond recently observed thermotropic smectic phases, adding to the portfolio of phase behavior exhibited by these materials.  相似文献   

13.
Complexation, between a ditopic ligand, consisting of a 2,6-bis-(1′-methylbenzimidazolyl)-4-oxypyridine moiety (O-Mebip) attached to either end of a penta(ethylene glycol) core, with transition metal and lanthanide ions, results in the formation of metallosupramolecular polymers, soluble in acetonitrile at high temperatures. Cooling the hot sol to room temperature causes phase separation and crystallization, and produces mechanically-strong gels, which exhibit a highly thixotropic behavior. Optical microscopy indicates that the gel morphology consists of spherulitic particles, which are easily broken by mechanical shear. Reproducible gel properties are produced when the gel is formed by cooling in a sonication bath, which produces a finely-divided globular morphology, and increases the modulus of the gels. Wide angle X-ray diffraction study shows that the crystalline structures of the gels are strongly dependent on the thermal history of gel formation and the nature of the metal ion. The gel properties are a result of the interactions between the colloidal particles produced by the phase separation and crystallization process. These interactions, which may reflect electrostatic forces and possibly metal-ligand binding, in addition to the usual van der Waals interactions, give rise to the formation of a network structure. The disruption of this network by mechanical shear, and its facile reformation when shear is removed, are the origin of the pronounced thixotropic behavior of the gels.  相似文献   

14.
The mechanisms of oxide gel formation in inverse micelle and lamellar surfactant systems have been investigated by Small Angle Neutron Scattering (SANS). In the first of these processes colloidal particles and gels are formed by the controlled hydrolysis and condensation of metal alkoxides in a reversed microemulsion system (water in oil), where the water is confined in the microemulsion core. With this route the rate of formation and structure of the oxide gel can be controlled by appropriate choice of the surfactant molecule (e.g. chain length) and the volume fraction of the micelles dispersed in the continuous organic phase. Investigations have been made with the system cyclohexane/water/C8E x , where C8E x is the non-ionic surfactant octylphenyl polyoxyethylene. The influence of the size and structure of the microemulsion has been studied by contrast variation (using deuterated solvents) before and during the reaction to form zirconia gels, and the mechanism of gelation is analysed in terms of percolation of fractal cluster aggregates. The structure of gels formed in surfactant/water lamellar phase systems, using surfactants with greater chain length, has also been investigated by SANS. The application of contrast variation to study such anisotropic bilayer systems, in which oriented gel films can be formed, is illustrated.  相似文献   

15.
A novel low-molecular mass tetrameric sugar derivative containing azobenzene core, 1, showed pronounced hydrogelation at micromolar concentration. Based on this observation, four related azobenzene based tetrameric sugar derivatives, 4-7, and three tetrameric sugar derivatives with a bis-terephthalamide core, 9-11, were also synthesized. However, none of these closely related analogues of the compound 1 showed effective gelation. The gel formed from 1 was characterized extensively using melting temperature analysis, UV-vis, FT-IR, circular dichroism spectroscopy, and scanning electron microscopy. The resultant gel exhibited impressive tolerance to the pH variation of the aqueous phase and gelated water in the pH range of 4-10. While UV-vis and CD spectroscopy indicated that pronounced aggregation of the azobenzene chromophores in 1 was responsible for gelation, FT-IR studies showed that hydrogen bonding is also a contributing factor in the gelation process. The melting of gel was found to depend on the pH of the aqueous medium in which gel was formed. The gel showed considerable photostability to UV irradiation, indicating tight intermolecular packing inside the gelated state that rendered azobenzene groups in the resultant aggregate refractory to photoisomerization. The electron micrographs of the aqueous gels of 1 showed the existence of spongy globular aggregates in such gelated materials. Addition of salts to the aqueous medium led to a delay in the gelation process and also caused remarkable morphological changes in the microstructure of the gel.  相似文献   

16.
We study gel formation in a mixture of equally-sized oppositely charged colloids both experimentally and by means of computer simulations. Both the experiments and the simulations show that the mechanism by which a gel is formed from a dilute, homogeneous suspension is an interrupted gas-liquid phase separation. Furthermore, we use Brownian dynamics simulations to study the relation between gel formation and the equilibrium phase diagram. We find that, regardless of the interaction range, an interrupted liquid-gas phase separation is observed as the system is quenched into a state point where the gas-liquid separation is metastable. The structure of the gel formed in our experiments compares well with that of a simulated gel, indicating that gravity has only a minor influence on the local structure of this type of gel. This is supported by the experimental evidence that gels squeezed or stretched by gravity have similar structures, as well as by the fact that gels do not collapse as readily as in the case of colloid-polymer mixtures. Finally, we check whether or not crystallites are formed in the gel branches; we find crystalline domains for the longer ranged interactions and for moderate quenches to the metastable gas-liquid spinodal regime.  相似文献   

17.
Mesopore formation in silica gels having continuous macropores has been investigated. The macroporous wet silica gel prepared by the sol‐gel process including phase separation was aged in a basic solvent making use of hydrolysis of urea in a closed condition. The mesopore structure was finally obtained by subsequent evaporation drying of solvent and heat‐treatment at 600°C for 2 h. The dissolution‐reprecipitation kinetics at the interfaces between wet gel skeletons and an external solvent affected the size and volume of pores formed within the skeletons. Below 120°C, mesopores suitable for various chromatographic applications have been formed typically within 24 h. On the other hand, at 200°C, the pore size attained the macropore dimensions (>50 nm), and the whole macroporous morphology was significantly modified.  相似文献   

18.
The phase behavior and its linear viscoelastic responses of a biocompatible blend based on ethylene-vinyl acetate copolymers and poly(??-caprolactone) (EVA/PCL) were studied in this work in terms of blending ratios and annealing. The effects of viscosity ratios and vinyl acetate contents of the EVA on the co-continuous morphology were addressed. The results show that EVA/PCL is a typical immiscible blend due to the high interfacial tension between the two polymers. Thus, the blend shows a wide percolation range with a narrow fully co-continuous region. Although the phase inversion point can be well predicted by the viscous Utracki model, the dynamic viscoelastic responses of the blend cannot be well described by the emulsion model. The elasticity ratio was proposed to play an important role together with the viscosity ratio on the phase inversions. During dynamic annealing, the phase size of both the sea?Cisland and the co-continuous structures increases evidently, but the principle of time?Ctemperature superposition is only valid for the co-continuous blend while fails with that with the sea?Cisland phase structure. Beside, the phase size of the co-continuous structure is dependent strongly on the viscosity ratio between EVA and PCL. With reduced viscosity ratio, the phase size increases remarkably. However, vinyl acetate (VA) contents of the EVA have little influences on the interfacial properties and phase size of the co-continuous blends in the experimental content ranges (28?C12?wt.%).  相似文献   

19.
The supermolecular structures of thermoreversible gels formed from either homogeneous or heterogeneous solutions were examined by scanning electron microscopy. The morphologies of gels of polyethylene and polystyrene of various tacticities were then related to the phase diagram of the polymer–solvent system. We confirmed the morphological findings of Aubert on isotactic polystyrene gels formed either above the binodal or inside the spinodal and extended his study to gels prepared within the metastable region of the phase diagram. For polystyrenes and polyethylene, the morphology of the gels formed inside the coexistence curve differs markedly from that of gels formed outside. Inside the binodal, gels of polyethylene and polystyrenes exhibit remarkable morphological similarities, indicating a common gelation mechanism, namely, liquid-liquid phase separation. Depending on the concentration, these gels exhibit either an open strut-like network structure or smooth spherical globules. The former is attributed to gelation inside the spinodal whereas the latter is believed to result from gelation in the metastable region. For crystalline polymers, gels formed inside the coexistence curve subsequently undergo crystallization within their polymer-rich phase. The morphology of isotactic polystyrene and polyethylene gels formed outside the binodal consists of overlapping lamellar structures, whereas that of atactic and epimerized polystyrene gels is characterized by a sheet-like structure, differentiating the crystallization-based mechanism from others. © 1993 John Wiley & Sons, Inc.  相似文献   

20.
Cellulose nanofibers (CNFs) have emerged as a promising nanofiller for effective reinforcement of nanocomposites due to their excellent mechanical properties. In this study, CNFs were fabricated by a simple grinding method and used to strengthen polyacrylamide (PAM) gels through in situ free radical polymerization. The morphology, compression properties, and chemical structure of the prepared gels were investigated. The results showed that large amounts of nanofibers embedded inside the PAM matrix and formed network structure by increasing the CNF content. Significantly, PAM/CNF gel with 5 wt% CNF exhibited highly improved compression strength by 6.8-fold as compared to that of pure PAM gel. The FTIR analysis indicated that hydrogen bondings between CNF and PAM chains mainly contributed to the superior mechanical properties of the hybrid gels. In summary, this study provides a novel alternative approach for preparing tough composite gels by combing rigid CNF and soft polymer and extending the application of biomedical load-bearing gel materials such as artificial cartilage and other soft tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号