首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
The present work deals with uranium and thorium recovery from the Egyptian monazite sulfate leach liquor using the extraction chromatography technique (solvent impregnated material), where tributylamine (TBA) and di-n-octylamine (DOA) solvents were impregnated onto foam uranium and thorium separate recovery. The calculated theoretical capacities of the latter solvents were about 1.4 gU/g foam and 1.6 gTh/g foam, respectively. The attained uranium and thorium adsorption efficiencies (using ion-exchange columnar technique) were about 75 and 70% of its theoretical capacities, respectively. Using 1 M NaCl–0.1 M H2SO4 and 2 M H2SO4 as eluent solutions for uranium and thorium from the loaded solvents impregnated foam gave 95.8 and 98.7% elution efficiencies, respectively.  相似文献   

2.
A simple method is described for the solvent extraction of thorium. Thorium is extracted quantitatively from 5·10–3M sodium salicylate solution at pH 2.5–3.25 using 2.16·10–2M triphenylphosphine oxide as an extractant dissolved in toluene. The extracted metal ion is stripped with hydrochloric acid (0.1M) and determined spectrophotometrically with Thoron-1 at 540 nm. The method permits separation of thorium from lanthanum, cerium, neodymium, samarium and uranium from binary mixtures and is applicable to the analysis of monazite sand. The method is precise, accurate and selective.  相似文献   

3.
A simple and selective spectrophotometric method has been developed for the extraction and separation of thorium(IV) from sodium salicylate media using Cyanex 272 in kerosene. Thorium(IV) was quantitatively extracted by 5 × 10−4 M Cyanex 272 in kerosene from 1 × 10−5M sodium salicylate medium. The extracted thorium(IV) was stripped out quantitatively from the organic phase with 4.0 M hydrochloric acid and determined spectrophotometrically with arsenazo(III) at 620 nm. The effect of concentrations of sodium salicylate, extractant, diluents, metal ion and strippants has been studied. Separation of thorium(IV) from other elements was achieved from binary as well as multicomponent mixtures such as uranium(VI), strontium(II), rubidium(I), cesium(I), potassium(I), Sodium(I), lithium(I), lead(II), barium(II), beryllium(II) etc. Using this method separation and determination of thorium(IV) in geological and real samples has been carried out. The method is simple, rapid and selective with good reproducibility (approximately ±2%).  相似文献   

4.
Solvent extractions of thorium(IV) and uranium(VI) by a commercially available chelating extractant LIX-26 (an alkylated 8-hydroxyquinoline) or 8-hydroxyquinoline, benzoic or salicylic acid, dipentyl sulphoxide (DPSO) and their mixtures with butanol as modifier in benzene/methylisobutyl ketone (MIBK) as the diluent have been studied. Extraction of uranium(VI) by 10% LIX-26 and 10% butanol in benzene becomes quantitative at pH 5.0. The pH 0.5 values for the extraction of thorium(IV) and uranium(VI) are 4.95 and 3.35, respectively. Quantitative extraction of thorium(IV) by the mixture of 0.1 M oxine and 0.1 M salicylic acid in methylisobutyl ketone was observed at pH 5.0. The influence of concentration of various anions on the extraction of Th4+ by mixtures of LIX-26 and benzoic acid has been studied. Studies on extraction of thorium(IV) and uranium(VI) by mixtures of LIX-26 (HQ) and DPSO show that the extracted species are possibly of the type [ThQ2/DPSO/2/SCN/2] and [UO2Q2/DPSO/], respectively.  相似文献   

5.
The solvent extraction behavior of thorium traces from the hydrochloric acid media with 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone (PMBP) is described using 234Th as a tracer. The influence of certain variables such as extractant concentration, acidity, equilibrium time as well as UO2 2+ ions on the extraction of thorium has been investigated systematically. The back-extraction behavior of thorium from the organic phase has also been tested. The results reveal that the percent extraction of 234Th decreases with increasing hydrochloric acid concentration and thorium is easily back-extracted with an 4-6 mol/l aqueous HCl solution. At the same time, the effect of thorium extraction with PMBP was tested employing radioisotopes as multi-tracers in the irradiation of natural uranium with 14-15 MeV neutrons. The results show that thorium can be completely separated from a large amount of uranium and most of the other main reaction products.  相似文献   

6.
An extraction chromatographic method is described for the pre-concentration and separation of thorium, uranium, plutonium and americium in human soft tissues. Tissues such as lung and liver are oven dried at 120°C, ashed at 450°C and the ashed sample is alternately wet (HNO3/H2O2) and dry ashed, and then dissolved in 8M HCl. Because of the complex matrix and large sample samples (up to 1500 g), the actinides were preconcentrated from the tissue solution using the TRUTM resin (EIChroM) prior to elemental separation by extraction chromatography and determination of americium, plutonium, uranium and thorium by alpha spectrometry. The actinides were eluted from the preconcentration column and each actinide was individually eluted on TEVATM and TRUTM resin columns in a tandem configuration. Actinide activities were then determined by alpha spectrometry after electrodeposition from a sulfate medium. The method was validated by analyzing human tissue samples previously analyzed for americium, plutonium, uranium and thorium in the United States Transuranium and Uranium Registries (USTUR). Two National Institute of Standards and Technology (NIST) Standard Reference Materials, SRM 4351-Human Lung and SRM 4352-Human Liver were also analyzed. United States Transuranium and Uranium Registries, Washington State University, Pullman, WA, 99163, USA.  相似文献   

7.
A solvent extraction process is proposed to recover uranium and thorium from the crystal waste solutions of zirconium oxychloride. The extraction of iron from hydrochloride medium with P350, the extraction of uranium from hydrochloride with N235, and the extraction of thorium from the mixture solutions of nitric acid and the hydrochloric acid with P350 was investigated. The optimum extraction conditions were evaluated with synthetic solutions by studying the parameters of extractant concentration and acidity. The optimum separation conditions for Fe (III) are recognized as 30% P350 and 4.5 to 6.0 M HCl. The optimum extraction conditions for U (VI) are recognized as 25% N235 and 4.5 to 6.0 M HCl. And the optimum extraction conditions for Th (VI) are recognized as 30% P350 and 2.5 to 3.5 M HNO3 in the mixture solutions. The recovery of uranium and thorium from the crystal waste solutions of zirconium oxychloride was investigated also. The results indicate that the recoveries of uranium and thorium are 92 and 86%, respectively.  相似文献   

8.
A simple and effective method is presented for the separation and preconcentration of thorium(IV) and uranium(VI) by solid phase extraction on Duolite XAD761 adsorption resin. Thorium(IV) and uranium(VI) 9-phenyl-3-fluorone chelates are formed and adsorbed onto the Duolite XAD761. Thorium(IV) and uranium(VI) are quantitatively eluted with 2 mol L−1 HCl and determined by inductively coupled plasma-mass spectrometry (ICP-MS). The influences of analytical parameters including pH, amount of reagents, amount of Duolite XAD761 and sample volume, etc. were investigated on the recovery of analyte ions. The interference of a large number of anions and cations has been studied and the optimized conditions developed have been utilized for the trace determination of uranium and thorium. A preconcentration factor of 30 for uranium and thorium was achieved. The relative standard deviation (N = 10) was 2.3% for uranium and 4.5% for thorium ions for 10 replicate determinations in the solution containing 0.5 μg of uranium and thorium. The three sigma detection limits (N = 15) for thorium(IV) and uranium(VI) ions were found to be 4.5 and 6.3 ng L−1, respectively. The developed solid phase extraction method was successively utilized for the determination of traces thorium(IV) and uranium(VI) in environmental samples by ICP-MS.  相似文献   

9.
Extraction behavior of 1 × 10−2–0.1 M U(VI) from aqueous phases containing 0.86 M Th(IV) at 4 M HNO3 in 1.1 M tributyl phosphate (TBP) and 1.1 M N,N-dihexyl octanamide (DHOA) solutions in different diluents viz. n-dodecane, 10% 1-octanol + n-dodecane, and decahydronaphthalene (decalin) was studied. Third-phase formation was observed in both the extractants using n-dodecane as diluent. There was a gradual decrease in Th(IV) concentration in the third-phase (heavy organic phase, HOP) with increased aqueous U(VI) concentration [0.71 M (no U(VI))–0.61 M (0.1 M U(VI)) for TBP; 0.27 M (no U(VI))–0.22 M (0.1 M U(VI)) for DHOA]. The HOP volume in case of DHOA was ~2.2 times of that of TBP. Uranium concentration in HOP increased with its initial concentration in the aqueous phase [from 1.8 × 10−2 M (0.01 M U(VI))–0.162 M (0.1 M U(VI)) for TBP; from 1.4 × 10−2 M (0.01 M U(VI))–0.14 M (0.1 M U(VI)) for DHOA] suggesting that Th(IV) was being replaced by U(VI). An empirical correlation was developed for predicting the concentrations of uranium and thorium in HOP for both the extractants. No third-phase appeared during the extraction of uranium and thorium from the aqueous phases employing 10% 1-octanol + n-dodecane, or decalin as diluents, and therefore, were better choices as diluent for alleviating the third-phase formation during the reprocessing of spent thorium based fuels, and for the recovery of thorium from high-level waste solutions.  相似文献   

10.
A highly sensitive separation procedure has been developed to investigate uranium and thorium activities and their isotopic ratios in environmental water samples in Tokushima, Japan. Uranium and thorium isotopes in environmental water samples were simultaneously isolated from interfering elements with extraction chromatography using an Eichrom UTEVA™ resin column. After the chemical separation, activities of U and Th isotopes coprecipitated with samarium fluoride (SmF3) were measured by α-spectrometry. It has been confirmed that uranium isotopes are isolated successfully from thorium decay chains by analyzing a test aqueous solution as a simulation of an environmental water sample. The separation procedure has been first applicable to the determination of U and Th activities and their isotopic ratios in a drinking well water named “Kurashimizu” in Tokushima City, Japan. The specific activities of 238U and 232Th in “Kurashimizu” were deduced to be within the upper limits of <0.31 and <0.19 mBq/l, respectively.  相似文献   

11.
The extraction of thorium and hafnium was studied in the system of 0.1M OETAPP in CHCl3/HCl or HNO3 at acid concentrations of 1–10 M. It has been found by the dilution method that under the experimental conditions mono- and disolvates of thorium nitrate or hafnium chloride, the disolvate of thorium chloride or the monosolvate of hafnium nitrate are formed. The solvation and hydration energies of thorium chloride in the system of 1M ThCl4 in 1M HCl−1M OETAPP in CHCl3 as well as their difference were calculated.  相似文献   

12.
It is today a most common phenomenon that ultratrace analyses for quality control have to be carried out in industrial laboratories far from optimum conditions and in spite of the lack of best suited equipment. It was against this setting that the development of a method for the photometric determination of uranium- and thorium-traces in glasses with arsenazo III was envisaged. The method basically consists of a digestion with HF/HClO4/H3BO3, an extractive preseparation of interfering Ti- and Zr-traces with TTFA/hexanol/CCl4, an extractive separation of U- and Th-traces with TTFA/TBP/toluene and a final determination of thorium alone (in the presence of photometrically inactive U(VI)) and the sum of Th+U(IV) with arsenazo III.The concentration of uranium is calculated from the difference of the sum of both traces minus the thorium content. Uranium can be determined with nearly the same sensitivity as thorium after reduction to uranium(IV). The most suitable reducing agent for uranium(VI) to uranium(IV) is a mixture of Na2S2O4/CH2O. An optimization of the arsenazo III concentration for the determination of thorium and uranium yielded an optimal concentration of 80 mg/L arsenazo III: For the reduction of uranium concentrations of 2 g/L of Na2S2O4 and 3.2 g/L CH2O proved to be optimal. Interferences of this photometric end determination by titanium, zirconium and scandium were investigated quantitatively. The permissible excess for these elements was found to be so low that a trace-trace separation method proved to be necessary. Separation methods were checked for the separation of the matrix components of the investigated glasses from thorium and uranium. One of these methods was suitable after optimization: thorium and uranium are extracted with TTFA/TBP/toluene from a solution containing hydrochloric acid. Back-extraction is carried out with HCl/KMnO4. For the separation of titanium- and zirconium-cotraces an extra separation method had to be developed: they are extracted with TTFA/hexanol/CCl4 before the separation of uranium- and thorium-traces from the matrix. The glasses were digested with HF/HX. Fluoride from the hydrofluoric acid is incompletely removed by evaporation and interferes with the extraction of uranium and thorium due to complex formation. Depending on the digestion variant used 162 to 0.23 mg F remain in the residue of the digestion of a 5 g sample. This interference was eliminated by a digestion with HF/HClO4/H3BO3 and masking of residual fluoride with AlCl3.Abbreviations used Arsenazo III 1,8-Dihydroxynaphthalene-3,6-disulphonic acid-2,7-bis [(azo-2)-phenylarsonic acid] - Arsenazo I 1,8-Dihydroxynaphthalene-3,6-disulphonic acid-2-[(azo-2)-phenylarsonic acid] - BPAP 2- (5-Bromo-2-pyridy] azo)-5-diethylaminophenol - EDTA Ethylenediaminetetraacetic acid - HX Designation for a high boiling mineral acid - FAAS Flame atomic absorption spectrometry - FOD 1,1,1,2,3,3,-Heptafluor-7, dimethyl-4,6-octanedione - GFAAS Graphite furnace atomic absorption spectrometry - ICP-MS Inductively coupled plasma — mass spectrometry - ICP-OES Inductively coupled plasma — optical emission spectrometry - LAS Liquid absorption spectrophotometry (classical photometry) - m(Th) Mass of thorium - NAA Neutron activation analysis - pKDiss Negative logarithm to the base 10 of the dissociation constant of a complex - TBP Tri-(n-butyl)-phosphate - TOPO Tri(n-octyl)-phosphinoxide - TTFA 1-(2-Thenoyl)-3,3,3-trifluoroacetone  相似文献   

13.
The radioactivity concentration of 236Pu, 232U and 228Th in aqueous samples has been determined by means of alpha spectroscopy after chemical separation and pre-concentration of the radionuclides by cation exchange and liquid–liquid extraction using the Chelex-100 resin and 30% TBP/dodecan, respectively. Method calibration using a 236Pu standard solution containing the daughter radionuclides results in a detector efficiency of 18% and in a chemical recovery for cation-exchange which is (30 ± 7)%, (90 ± 5)% and (20 ± 5)% for plutonium, uranium and thorium, respectively. The chemical recovery for liquid–liquid extraction is found to be (60 ± 7)%, (50 ± 5)% and (70 ± 5)%, for plutonium, uranium and thorium, respectively. The differences in the efficiencies can be ascribed to the oxidation states, the different actinides present in solution. Taking into account that the electrodeposition of the radionuclides under study is quantitative, the total method efficiency is calculated to be (18 ± 15)%, (46 ± 7)% and (15 ± 5)%, for plutonium, uranium and thorium, respectively, at the mBq concentration range. The detection limit of the alpha spectrometric system has been found to be 0.2 mBq/L, suggesting that the method could be successfully applied for the radiometric analysis of the studied radionuclides and particularly uranium in aqueous samples.  相似文献   

14.
A method for the sequential determination of thorium and uranium has been developed. In the sample solution containing thorium and uranium, thorium is first determined by complexometric titration with ethylenediaminetetraacetic acid (EDTA) and then in the same solution uranium is determined by redox titration employing potentiometry. As EDTA interferes in uranium determination giving positive bias, it is destroyed by fuming with HClO4 prior to the determination of uranium. A precision and accuracy of better than ±0.15% is obtained for thorium at 10mg level and uranium ranging from 5 mg to 20 mg in the aliquot.  相似文献   

15.
In this study, the effects of various extraction parameters such as extractant types (Cyanex302, Cyanex272, TBP), acid type (nitric, sulfuric, hydrochloric) and their concentrations were studied on the thorium separation efficiency from uranium(VI), titanium(IV), lanthanum(III), iron(III) using Taguchi??s method. Results showed that, all these variables had significant effects on the selective thorium separation. The optimum separations of thorium from uranium, titanium and iron were achieved by Cyanex302. The aqueous solutions of 0.01 and 1 M nitric acid were found as the best aqueous conditions for separating of thorium from titanium (or iron) and uranium, respectively. The combination of 0.01 M nitric acid and Cyanex272 were found that to be the optimum conditions for the selective separation of thorium from lanthanum. The results also showed that TBP could selectively extract all studied elements into organic phase leaving thorium behind in the aqueous phase. Detailed experiments showed that 0.5 M HNO3 is the optimum acid concentration for separating of thorium from other elements with acidic extractants such as Cyanex272 and Cyanex302. The two-stage process containing TBP-Cyanex302 was proposed for separation thorium and uranium from Zarigan ore leachate.  相似文献   

16.
Reprocessing of spherical THTR fuel elements shall be tested in the Jülich pilot plant JUPITER. This fuel type differs significantly from other fuel elements with respect to shape, composition and fissile material content. It requests special provisions for reprocessing and the necessary material balancing and safeguarding. Two material balance areas (MBA) are defined: head end and chemical extraction process. Within the 1. MBA uranium and thorium are balanced mainly by using a combination of digital counting of the fuel spheres, gammaspectrometric burn-up determination of individual spheres and X-ray fluorescence determination of uranium and thorium in nitric acid solutions which have been obtained by dissolution in Thorex reagent of the heavy metal oxides after burning of the graphite matrix. The 2. MBA begins with the solution for the chemical extraction process, collected in the so called accountability tank. After extraction according to the Thorex flowsheet the process streams are monitored in line for process control, and off line for material balancing and safeguarding. This is performed mainly by X-ray fluorescence analysis, potentiometric titrations, alpha- and mass spectrometry.  相似文献   

17.
 Traces of uranium and thorium in barium(II), strontium(II) titanate ((Ba, Sr)TiO3) ferroelectric materials were determined by inductively coupled plasma mass spectrometry (ICP-MS). Samples were completely dissolved by a mixture of 1.4% H2O2 and 1.0 mol⋅l-1 HNO3. For a complete separation of the analytes from the matrix elements, a two step separation technique involving leaching and anion-exchange was applied. By the leaching step with HNO3 more than 90% of the matrix can be removed whereas the analytes completely remained in the solution. The anion-exchange step was carried out on a BIO⋅RAD AG1-X8 column with a mixture of 1.0 mol⋅l-1 HF and 0.5 mol⋅l-1 HNO3 as eluent. The content of uranium and thorium was subsequently measured by ICP-MS. The detection limits (D.L.) obtained were 0.043 ng g-1 and 0.035 ng g-1 for U and Th, respectively. The reproducibility was satisfactory with a relative standard deviation of less than 3% (at the 1 ng g-1 level, n=5). The matrix concentrations in the final solution were reduced to the sub-μg ml-1 level which is in the range of the detection limits of USN-ICP-AES (ultrasonic nebulization-ICP-atomic emission spectroscopy). The method was successfully applied to the determination of uranium and thorium in three synthetic (Ba, Sr)TiO3 samples spiked with the analytes at levels of 1, 5 and 10 ng g-1 and three (Ba, Sr)TiO3 ferroelectric samples containing sub-ng g-1 levels of the analytes. Received: 26 February 1996/Revised: 28 May 1996/Accepted: 5 June 1996  相似文献   

18.
 Traces of uranium and thorium in barium(II), strontium(II) titanate ((Ba, Sr)TiO3) ferroelectric materials were determined by inductively coupled plasma mass spectrometry (ICP-MS). Samples were completely dissolved by a mixture of 1.4% H2O2 and 1.0 mol⋅l-1 HNO3. For a complete separation of the analytes from the matrix elements, a two step separation technique involving leaching and anion-exchange was applied. By the leaching step with HNO3 more than 90% of the matrix can be removed whereas the analytes completely remained in the solution. The anion-exchange step was carried out on a BIO⋅RAD AG1-X8 column with a mixture of 1.0 mol⋅l-1 HF and 0.5 mol⋅l-1 HNO3 as eluent. The content of uranium and thorium was subsequently measured by ICP-MS. The detection limits (D.L.) obtained were 0.043 ng g-1 and 0.035 ng g-1 for U and Th, respectively. The reproducibility was satisfactory with a relative standard deviation of less than 3% (at the 1 ng g-1 level, n=5). The matrix concentrations in the final solution were reduced to the sub-μg ml-1 level which is in the range of the detection limits of USN-ICP-AES (ultrasonic nebulization-ICP-atomic emission spectroscopy). The method was successfully applied to the determination of uranium and thorium in three synthetic (Ba, Sr)TiO3 samples spiked with the analytes at levels of 1, 5 and 10 ng g-1 and three (Ba, Sr)TiO3 ferroelectric samples containing sub-ng g-1 levels of the analytes. Received: 26 February 1996/Revised: 28 May 1996/Accepted: 5 June 1996  相似文献   

19.
Liquid–liquid extraction and separation studies of uranium have been carried out from sodium salicylate media using cyanex 272 in toluene. Uranium was quantitatively extracted by 1 × 10−3 M sodium salicylate with 5 × 10−4 M cyanex 272 in toluene. The extracted uranium(VI) was stripped out quantitatively from the organic phase with 1.0 M hydrochloric acid and determined spectrophotometrically with arsenazo(III) at 660 nm. The effect of concentration of sodium salicylate, extractant, diluents, metal ion and strippants has been studied. Separation of uranium(VI) from other elements was achieved from binary as well as from multicomponent mixtures. The method was extended for the separation and determination of uranium(VI) in geological samples. The method is simple, rapid and selective with good reproducibility (approximately ± 2%).  相似文献   

20.
The separation of uranium and thorium from matrices containing various metal ions, was studied. The mobile phase contains isopropyldithiophosphoric acid (i-PrDTP), as a complexing agent, in order to differentiate the studied species by modifying their retention. The paper reports the successful separation and the quantitative determination of uranium and thorium in the presence of Ni2+, Co2+ and Ag+ in the concentration range 2.5–2.5 μg/μl for uranium and 2.5–30 μg/μl for thorium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号