首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An experimental study has been performed shedding light on the conformational energies of the asymmetric ether n-butyl ethyl ether. Rotational spectroscopy between 7.8 GHz and 16.2 GHz has identified two conformers of n-butyl ethyl ether, C4H9OC2H5. In these experiments spectra were observed as the target compound participated in an argon expansion from high to low pressure causing molecular rotational temperatures to be below 4 K. For one conformer, 95 pure rotational transitions have been recorded, for the second conformer, 20 pure rotational transitions were recorded. Rotational constants and centrifugal distortion constants are presented for both butyl ethyl ether conformers. The structures of both conformers have been identified by exploring the multi-dimensional molecular potential energy surface using ab initio calculations. From the numerous low energy conformers identified using ab initio methods, the three lowest conformers were pursued at increasingly higher levels of theory, i.e. complete basis set extrapolations, coupled cluster methods, and also taking into consideration zero point vibrational energies. The two conformers observed experimentally are only revealed to be the two lowest energy conformers when high levels of quantum chemical methodologies are employed.  相似文献   

2.
By the B3P86/6‐311G(3d,2p) method, remote substituent effects on trans‐YCH?CHCH2F were investigated by examining their conformational stabilities, molecular geometries, and stereoelectronic interactions in this paper. The cis conformer is favored for Y?H, Cl, Me, Vinyl, CF3, CN, CHO, and NO2, whereas the gauche is favored for Y?OMe, OH. A correlation of ΔH with the substituent constants σ+(Y) shows that the increasing electron‐withdrawing ability of the substituent Y increases the relative stability of the cis conformer. It was found that the substituent effect on the molecule stabilization energies (relative to CH2?CHCH2F) is more significant in the gauche conformers than in the cis conformers. In agreement, molecular structures of the gauche conformers were also observed to vary more significantly with the substitution than those of the cis conformers. By the second‐order perturbation energy (E(2)) in NBO analysis, it was found that the total C2–C3 vicinal hyperconjugation is determinant in the enthalpy difference and consequently controls the conformational stability. Further analysis shows that the substituent effect on the C2–C3 vicinal hyperconjugations is much higher in the gauche conformers than in the cis conformers. The highly sensitive πC?C→σ*C? F interaction to the substitution in the gauche conformers, is the leading factor in variation of molecular stability and geometry. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Molecular complexes, dimers and heterodimers often show interesting structures, large amplitude internal motions and orientations for reaction coordinates. These properties were the motivations for the current study of the rotational spectra of the heterodimers, CH3OH-CO2 and CH3OH-H2CO, in a pulsed nozzle Fourier-transform microwave (FTMW) spectrometer. In addition to studying the normal isotopic forms, several isotopologues containing 13C or deuterium substituted atoms of each heterodimer were analyzed in order to obtain structural data of the complexes. All species showed splittings from internal rotation of the methyl group and splittings on the b-type transitions of the CH3OH-H2CO species suggesting rotation of the H2CO group between equivalent structural forms. Stark effect measurements on each of the parent species provided dipole moment components. Theoretical ab initio results are compared to the experimentally determined molecular parameters.  相似文献   

4.
Geometry optimization calculations on 13 members of the C3H6O3 family of organic species have been carried out to determine their relative binding energies. Dimethyl carbonate [(CH3)2CO3] is one of the lower energy species in this family, which includes the C3-sugars 1,3-dihydroxyacetone and glyceraldehyde. The microwave spectrum of dimethyl carbonate has been measured over the frequency range 8.4-25.3 GHz with several pulsed-beam Fourier-transform microwave spectrometers and from 227 GHz to 350 GHz with direct absorption spectrometers. The spectrum of the lowest-energy cis-cis conformer of dimethyl carbonate has been assigned, and ab initio electronic structure calculations of the three possible conformers have been performed. Stark effect measurements were carried out on the cis-cis conformer to provide accurate determinations of the dipole moment components.  相似文献   

5.
ABSTRACT

Formic acid (HCOOH, FA) was studied experimentally, by infrared spectroscopy, in H2 and D2 matrices, with focus on the preparation and characterisation in these matrix media of structures containing the higher-energy (cis) conformer. The cis-FA monomer and the cis-FA?…?N2 complex were successfully produced by selective vibrational excitation of corresponding trans-FA based species, and vibrationally characterised. The tunneling-induced conversion of the cis-FA?…?N2 complex in the studied matrices into the corresponding trans-FA complex was also investigated, and the found tunnelling properties discussed, in particular in comparison with those observed for the spontaneous conversion of cis-FA monomer into trans-FA. This article constitutes the first report on the infrared spectrum of FA conformers and stability of cis-FA monomer in a D2 matrix, and on the structure, spectroscopy and stability of the cis-FA?…?N2 complex in both H2 and D2 matrices. Different attempts to prepare the cis-FA?…?H2O complex in the two investigated matrices are also described in detail, both from previously in situ generated cis-FA monomer followed by thermal mobilisation and by direct selective vibrational excitation of the trans-FA-H2O complex.  相似文献   

6.
A. Lesar  T. Sajevic 《Molecular physics》2013,111(19):2301-2308
The structural and vibrational parameters of FC(O)ONO and FC(O)NO2 isomers were examined theoretically using the B3LYP/6-311+G(3df) and CCSD(T)/6-311G(d) methods. Four conformers of FC(O)ONO isomer and one FC(O)NO2 isomer are found here. Among them, the transcis and ciscis FC(O)ONO configuration are new conformers. The energetics were refined with G3//B3LYP and CBS-QB3 calculations. The trans–trans conformer of the FC(O)ONO isomer is found to be the lowest energy structure, with an estimated heat of formation of ?104.9 kcal mol?1 at 0 K as determined from CBS-QB3 theory. The next lowest structure is the cistrans FC(O)ONO lying 1.7 kcal mol?1 above the transtrans structural form. The highest energy structure is the FC(O)NO2 isomer with a predicted heat of formation of ?84.8 kcal mol?1. A comparison of the relative stability of the FCNO3 isomers with the isomers of ClCNO3 shows that the Cl analogues follow the same pattern of stability, as do the F isomers. However, the chlorine isomers are unstable relative to their fluorine analogues.  相似文献   

7.
The behavior of the chiral secondary alcohol butan-2-ol in both helium and argon-based supersonic expansions has been investigated by a combination of high-resolution microwave spectroscopy and ab initio molecular structure calculations. The study extends and complements a previous investigation that concentrated solely on an argon-based expansion. The spectrum of the helium-based expansion has been shown to contain at least six conformers of butan-2-ol, indicating a marked difference from the spectrum of the argon-based system, which has been shown to consist of contributions from only three. This indicates a difference in the relative abilities of the two gases to produce efficient conformer relaxation. By consideration of the calculated barriers to inter-conversion between the various conformers, we are able to show that this behavior is qualitatively consistent with previous observations of similar systems and a few remarks regarding the likely cause of this behavior are also made.Finally, we have been able to identify and characterize the four 13C isotopomers of the lowest energy butan-2-ol conformer and to perform a Kraitchmann-type analysis to confirm the conformation of the carbon chain in this species.  相似文献   

8.
Pure rotational spectra of S235Cl2 and S235Cl37Cl have been observed using a Fourier-transform microwave spectrometer. An analysis of the hyperfine structure made by considering the nuclear spin statistics showed that S2Cl2 has C2symmetry, where the hyperfine splittings due to the two Cl nuclei were analyzed precisely. The nuclear quadrupole coupling constants including the off-diagonal (χabχacχbc) components and the nuclear spin–rotation interaction constants associated with the two Cl nuclei have been determined for the first time. We have shown that the nuclear quadrupole interaction plays an important role in the orthopara mixing.  相似文献   

9.
The electron paramagnetic resonance (EPR) of Nd2(SO4)3 · 8H2O and Sm2(SO4)3 · 8H2O doped with Gd3+ has been carried out at 273 K and the spin-Hamiltonian parameters are deduced. The zero field splittings have been computed and compared with those observed directly by Bogle and Symmons. It is found that the discrepancy in the zero field splittings. between computed and directly observed values falls within the range of linewidths of directly observed values.  相似文献   

10.
A combined theoretical and experimental Raman study is presented on a diphenyl bithiophene molecule known as a good candidate for the development of organic nonvolatile memory devices. Spectroscopic markers suitable to distinguish the different stable conformers of the molecule have been predicted and detected. The combined analysis of theoretical and experimental Raman spectra recorded in solution indicates that at room temperature a dynamical equilibrium, characterized by interconversion between the two more stable conformers (namely trans and cis), takes place and that the more populated species is the cis form. Referring to the solid phase instead, Raman spectra of single‐crystal samples show the presence of the only trans conformer, as confirmed by X‐ray measurements. Finally, Raman spectra of thin films, as those used for the memory device, were collected; samples just deposited from solution and after few hours from the deposition were analyzed. Following the evolution of selective spectroscopic Raman markers, an isomerization process from the abundant cis (as‐deposited) to the totally trans (after few hours) conformer in the solid phase was detected. These results open the way to the identification of the molecular isomers present in the thin film of the memory cell and finally of the active molecular species involved in the switching mechanism of the operating device. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
The calculated and experimental Raman spectra of the (EMI+)TFSI ionic liquid, where EMI+ is the 1‐ethyl‐3‐methylimidazolium cation and TFSI the bis(trifluoromethanesulfonyl)imide anion, have been investigated for a better understanding of the EMI+ and TFSI conformational isomerism as a function of temperature. Characteristic Raman lines of the planar (p) and non‐planar (np) EMI+ conformers are identified using the reference (EMI+)Br salt. The anion conformer of C2 symmetry is confirmed to be more stable than the cis (C1) one by 4.5 ± 0.2 kJ mol−1. At room temperature, the population of trans (C2) anions and np cations is 75 ± 2% and 87 ± 4%, respectively. Fast cooling quenches a metastable glassy phase composed of mainly C2 anion conformers and p cation conformers, whereas slow cooling gives a crystalline phase composed of C1 anion conformers and of np cation conformers. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
We present the first pure rotational spectra of the two most stable conformers of oxatrisulfane, trans- and cis-HSSOH, in their vibrational ground state. For both conformers a-, b-, and c-type transitions have been recorded in the range from 75 to 120 GHz using an all solid-state spectrometer. More than 200 lines have been assigned for each conformer, most of them belonging to the rQ2- and the rQ3-branch of the perpendicular spectra. The least-squares fit analysis using a semirigid rotor Hamiltonian in S-reduction yields precise values for the ground-state rotational constants for cis-HSSOH, and for trans-HSSOH as well as centrifugal distortion parameters of quartic and sextic order. The ratio of the permanent dipole moment components μb/μc=0.29(3) for cis-HSSOH and μb/μc=0.99(3) for trans-HSSOH has been derived from measured line intensities. All experimentally derived molecular parameters are in very good agreement with high-level quantum-chemical calculations using coupled-cluster techniques, thus confirming the current understanding of the structure of oxasulfanes.  相似文献   

13.
The absorption spectra of trans and cis conformers of deuterated formic acid (HCOOD) isolated in argon and neon matrices are analyzed in the mid-infrared and near-infrared spectral regions (7900-450 cm−1). Vibrational excitation by narrow-band IR radiation is used to convert the lower-energy trans conformer to the higher-energy cis form. A large number of overtone and combination bands are identified. The results of anharmonic vibrational calculations (CC-VSCF) for both conformers are reported and compared to the experimental spectra.  相似文献   

14.
《Molecular physics》2012,110(21-22):2725-2733
We calculate second-order vibrational perturbation theory (VPT2) anharmonic force fields for the cis and trans conformers of S1 C2H2, and compare the results to experiment. The vibrational assignments of recently observed levels belonging to the cis well are of particular interest. A refined estimate of the cis origin position (44,870?±?10?cm?1) is proposed, and preliminary low-energy fits to the global J?=?K?=?0 trans level structure are also described. The performance of perturbation theory in this isomerizing system is examined, and both surprising successes and failures are encountered. We examine these and their causes, and offer practical suggestions for avoiding the pitfalls of applying perturbation theory to systems with large amplitude motions.  相似文献   

15.
The 770-880 cm−1 region of the methyl nitrite spectrum has been recorded at a resolution of 0.0015 cm−1 in a static cell. Consistent with published determinations of the barrier to internal rotation of the methyl group, bands belonging to the trans isomer are very congested while those belonging to the cis isomer are more tractable. A total of 634 lines have been assigned in the ν8 vibrational band of the cis isomer. These lines and 32 microwave lines have been globally fit to a Watson-type Hamiltonian with an rms deviation of 0.00044 cm−1. An additional 150 lines were also assigned but were not included in the fit because they were split by 0.001-0.005 cm−1, much larger than previously reported torsional or hyperfine splittings.  相似文献   

16.
EPR spectra of Gd3+-doped Ce2(SO4)3.8H2O and La2(SO4)3.9H2O single crystals have been measured with an X-band spectrometer at room and low temperatures. The absolute signs of spin Hamiltonian parameters have been determined for the La2(SO4)3.9H2O host from intensities of lines at liquid helium temperature; for the Ce2(SO4).8H2O host the lines broaden considerably below 60 K, not permitting the determination of absolute signs of spin Hamiltonian parameters. The data are analysed using a rigourous least-squares procedure, fitting simultaneously all lines obtained for several orientations of the external magnetic field. The zero-field splittings have been computed for both the hosts. The characteristics of EPR spectra of Gd3+ in these hosts are compared with those obtained in other rare-earth trisulphate octahydrate hosts.  相似文献   

17.
Infrared spectra of 1,2‐bis(trifluorosilyl)ethane (SiF3CH2CH2SiF3) were obtained in the vapour and liquid phases, in argon matrices and in the solid phase. Raman spectra of the compound as a liquid were recorded at various temperatures between 293 and 270 K and spectra of an apparently crystalline solid were observed. The spectra revealed the existence of two conformers (anti and gauche) in the vapour, liquid and in the matrix. When the vapour was chock‐frozen on a cold finger at 78 K and annealed to 150 K, certain weak Raman bands vanished in the crystal. The vibrational spectra of the crystal demonstrated mutual exclusion between IR and Raman bands in accordance with C2h symmetry. Intensity variations between 293 and 270 K of pairs of various Raman bands gave ΔH(gauche—anti) = 5.6 ± 0.5 kJ mol−1 in the liquid, suggesting 85% anti and 15% gauche in equilibrium at room temperature. Annealing experiments indicate that the anti conformer also has a lower energy in the argon matrices, is the low‐energy conformer in the liquid and is also present in the crystal. The spectra of both conformers have been interpreted, and 34 anti and 17 gauche bands were tentatively identified. Ab initio and density functional theory (DFT) calculations were performed giving optimized geometries, infrared and Raman intensities and anharmonic vibrational frequencies for both conformers. The conformational energy difference derived in CBS‐QB3 and in G3 calculations was 5 kJ mol−1. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
The data on the inversion spectrum in the ν2 state of 14ND3 [F. Scappini, A. Guarnieri, and G. DiLonardo, J. Mol. Spectrosc.95, 20–29 (1982)] have been extended by measuring frequencies of 25 new transitions. A simultaneous least-squares analysis of these data with the ground state microwave transition frequencies and the diode laser measurements of the ν2 band has been carried out. Improved sets of molecular parameters have been obtained for 14ND3 and 15ND3, including the ground and ν2 state inversion splittings, ν2 band origins, rotational and centrifugal distortion constants, and the parameters of the Δk = ±3n vibrational-rotational interactions.  相似文献   

19.
Samples of trans,trans and cis,cis forms of butadiene-1,4-d2 have been synthesized and found to contain useful amounts of the cis,trans species as a contaminant. Assignments of fundamental frequencies for the three isotopomers of butadiene-1,4-d2 have been extended and improved from investigations of their Raman spectra as well as their infrared (IR) spectra. High-resolution IR spectra have been recorded for the three isotopomers, and a rotational analysis has been completed for strong bands of each species. Ground state and some upper state rotational constants have been fit. Corresponding ground state moments of inertia compare favorably with equilibrium moments of inertia obtained from B3LYP/6-311++G** theory. Two 13C isotopomers are being prepared, and an improved structural analysis of butadiene will soon be available to assess how π-electron delocalization affects its structure.  相似文献   

20.
The rotation-tunneling spectrum of the second most stable gGg conformer of ethylene glycol (1,2-ethanediol) in its ground vibrational state has been studied in selected regions between 77 and 579 GHz. Compared to the study of the more stable aGg conformer, a much larger frequency range was studied, resulting in a much extended frequency list covering similar quantum numbers, J?55 and Ka?19. While the input data were reproduced within experimental uncertainties up to moderately high values of J and Ka larger residuals remain at higher quantum numbers. The severe mixing of the states caused by the Coriolis interaction between the two tunneling substates is suggested to provide a considerable part of the explanation. In addition, a Coriolis interaction of the gGg ground vibrational state with an excited state of the aGg conformer may also contribute. Relative intensities of closely spaced lines have been investigated to determine the signs of the Coriolis constants between the two tunneling substates relative to the dipole moment components and to estimate the magnitudes of the dipole moment components and the energy difference between the gGg and the aGg conformers. Results of ab initio calculations on the total dipole moment and the vibrational spectrum were needed for these estimates. The current analysis is limited to transitions with quantum numbers J?40 and Ka?6 plus those having J?22 and Ka?17 which could be reproduced within experimental uncertainties. The results are aimed at aiding radioastronomers to search for gGg ethylene glycol in comets and in interstellar space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号