首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 950 毫秒
1.
Angelica sinensis (Oliv.) Diels (“Danggui” in Chinese) is one of the most commonly used traditional Chinese medicines. It has been used to invigorate blood circulation for the treatment of anemia, hypertension, chronic bronchitis, asthma, rheumatism, and cardiovascular diseases. There are a number of A. sinensis-derived dietary supplements in the US markets. However, no study have been conducted to investigate the quality of these dietary supplements. In this paper, high-performance liquid chromatographic and flow-injection mass spectrometric fingerprints were both evaluated to assess the consistency of A. sinensis-derived dietary supplements. Similarity analysis was carried out on the high-performance liquid chromatographic (HPLC) fingerprints. Meanwhile, principal component analysis (PCA) was performed on the data obtained from flow-injection mass spectrometric (FIMS) fingerprints, which can analyze each sample in 2 min, compared with 30 min required for the chromatographic fingerprint. Both methods show significant chemical differences between samples that may be due to differences in growing locations, growing conditions, harvesting times, and/or botanical processing. The loading plots obtained from PCA singled out the discriminatory ions that were responsible for chemical differences of A. sinensis-derived dietary supplements.
Fig
In the present study, HPLC and flow-injection mass spectrometric fingerprints as well as chemometrics were applied to assess the consistency of A. sinensis-derived dietary supplements from U.S. markets in order to understand the variability of the products and to provide useful information with customers.  相似文献   

2.
A novel fingerprinting method, bioactivity fingerprint analysis, based on an ultrafiltration–ultraperformance liquid chromatography–multistage tandem mass spectrometry (UPLC–MS n ) method is proposed for the quality control of herbal medicines from the bioactivity viewpoint concerning the efficacy of herbal medicines. The bioactivity fingerprints reflecting the anti-inflammatory activities of radix Aconiti and radix Aconiti preparata were established. With use of ultrafiltration UPLC–MS n , 11 cyclooxygenase-2 ligands from radix Aconiti preparata and 14 cyclooxygenase-2 ligands from radix Aconiti were found after incubation with cyclooxygenase-2. Twelve of the cyclooxygenase-2 ligands were identified by the ultraperformance UPLC–MS n method. The enrichment factor of each peak in the bioactivity fingerprint was calculated and was demonstrated to be characteristic, which makes bioactivity fingerprint analysis for the quality control of herbal medicines possible from the viewpoint of their bioactivities.
Figure
Bioactivity fingerprint analysis is defined as the chromatograms and spectra of the complex system of effective constituents containing information on their pharmacodynamic activities  相似文献   

3.
The use of 1H-NMR-based metabolomics to distinguish and identify unique markers of five Ontario ginseng (Panax quinquefolius L.) landraces and two ginseng species (P. quinquefolius and P. ginseng) was evaluated. Three landraces (2, 3, and 5) were distinguished from one another in the principal component analysis (PCA) scores plot. Further analysis was conducted and specific discriminating metabolites from the PCA loadings were determined. Landraces 3 and 5 were distinguishable on the basis of a decreased NMR intensity in the methyl ginsenoside region, indicating decreased overall ginsenoside levels. In addition, landrace 5 was separated by an increased amount of sucrose relative to the rest of the landraces. Landrace 2 was separated from the rest of the landraces by the increased level of ginsenoside Rb1. The Ontario P. quinquefolius was also compared with Asian P. ginseng by PCA, and clear separation between the two groups was detected in the PCA scores plot. The PCA loadings plot and a t-test NMR difference plot were able to identify an increased level of maltose and a decreased level of sucrose in the Asian ginseng compared with the Ontario ginseng. An overall decrease of ginsenoside content, especially ginsenoside Rb1, was also detected in the Asian ginseng’s metabolic profile. This study demonstrates the potential of NMR-based metabolomics as a powerful high-throughput technique in distinguishing various closely related ginseng landraces and its ability to identify metabolic differences from Ontario and Asian ginseng. The results from this study will allow better understanding for quality assessment, species authentication, and the potential for developing a fully automated method for quality control.
Figure
Principal component analysis scores and loadings plot for differentiating between closely-related ginseng landraces in Ontario, Canada  相似文献   

4.
Matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is one of the most widely used mass-based approaches for bacterial identification and classification because of the simple sample preparation and extremely rapid analysis within a few minutes. To establish the accurate MALDI-TOF MS bacterial discrimination method at strain level, the ribosomal subunit proteins coded in the S10-spc-alpha operon, which encodes half of the ribosomal subunit protein and is highly conserved in eubacterial genomes, were selected as reliable biomarkers. This method, named the S10-GERMS method, revealed that the strains of genus Pseudomonas were successfully identified and discriminated at species and strain levels, respectively; therefore, the S10-GERMS method was further applied to discriminate the pathovar of P. syringae. The eight selected biomarkers (L24, L30, S10, S12, S14, S16, S17, and S19) suggested the rapid discrimination of P. syringae at the strain (pathovar) level. The S10-GERMS method appears to be a powerful tool for rapid and reliable bacterial discrimination and successful phylogenetic characterization. In this article, an overview of the utilization of results from the S10-GERMS method is presented, highlighting the characterization of the Lactobacillus casei group and discrimination of the bacteria of genera Bacillus and Sphingopyxis despite only two and one base difference in the 16S rRNA gene sequence, respectively.
Figure
?  相似文献   

5.
A fast method for quantification and identification of carotenoid and chlorophyll species utilizing liquid chromatography coupled with UV detection and mass spectrometry has been demonstrated and validated for the analysis of algae samples. This method allows quantification of targeted pigments and identification of unexpected compounds, providing isomers separation, UV detection, accurate mass measurements, and study of fragment ions for structural elucidation in a single run. This is possible using parallel alternating low- and high-energy collision spectral acquisition modes, which provide accurate mass full scan chromatograms and accurate mass high-energy chromatograms. Here, it is shown how this approach can be used to confirm carotenoid and chlorophyll species by identification of key diagnostic fragmentations during high-energy mode. The developed method was successfully applied for the analysis of Dunaliella salina samples during defined red LED lighting growth conditions, identifying 37 pigments including 19 carotenoid species and 18 chlorophyll species, and providing quantification of 7 targeted compounds. Limit of detections for targeted pigments ranged from 0.01?ng/mL for lutein to 0.24?ng/mL for chlorophyll a. Inter-run precision ranged for of 3 to 24 (RSD%) while inter-run inaccuracy ranged from ?17 to 11.
Figure
Identification of carotenoids and chlorophylls combining UPLC separation, UV detection, accurate mass measurements and study of fragment ions in a single run  相似文献   

6.
Sixty peony root training samples of the same age were collected from various regions in Korea and China, and their genetic diversity was investigated for 23 chloroplast intergenic space regions. All samples were genetically indistinguishable, indicating that the DNA-based techniques employed were not appropriate for determining the samples’ regions of origin. In contrast, 1H-nuclear magnetic resonance (1H-NMR) spectroscopy-based metabolomics coupled with multivariate statistical analysis revealed a clear difference between the metabolic profiles of the Korean and Chinese samples. Orthogonal projections on the latent structure-discrimination analysis allowed the identification of potential metabolite markers, including γ-aminobutyric acid, arginine, alanine, paeoniflorin, and albiflorin, that could be useful for classifying the samples’ regions of origin. The validity of the discrimination model was tested using the response permutation test and blind prediction test for internal and external validations, respectively. Metabolomic data of 21 blended samples consisting of Korean and Chinese samples mixed at various proportions were also acquired by 1H-NMR analysis. After data preprocessing which was designed to eliminate uncontrolled deviations in the spectral data between the testing and training sets, a new statistical procedure for estimating the mixing proportions of blended samples was established using the constrained least squares method for the first time. The predictive procedure exhibited relatively good predictability (adjusted R 2?=?0.7669), and thus has the potential to be used in the quality control of peony root by providing correct indications for a sample’s geographical origins.
Figure
1H-NMR spectroscopy-based metabolomics allowed the discrimination between genetically identical peony roots from different regions of origin and the estimation of the mixing proportions of blended samples  相似文献   

7.
The molecular imaging of paper cross sections containing the wet-strength additive poly(amidoamine)–epichlorohydrin (PAE) was effected by Fourier transform infrared (FT-IR) spectroscopic imaging. Thin cross sections of laboratory sheet samples were prepared and transferred onto CaF2 substrates. A laboratory sheet sample without PAE acted as a reference. Principal component analysis (PCA) was applied to identify and to reveal the distribution of PAE across the section. Differences in the loading plots of the fourth and fifth principal components for the sheets with and without PAE were found in the region of the amide I, amide II, and amine bands within a variance of 0.4–0.8 %. The score images of the PCA reveal inhomogeneous distribution of PAE. Small areas of higher concentration of PAE occur across the cross section. The aim of this study was to demonstrate that FT-IR spectroscopic imaging provides spatially resolved quantitative information about the chemical composition of paper, which was successfully achieved.
Figure
New analytical approach for imaging paper cross sections at molecular level  相似文献   

8.
The expression of genes responsible for the biosynthesis of stress proteins corresponds to the exposition of an organism to abiotic and/or biotic stress. We utilize two types of paramagnetic particles for isolation of total mRNA from early somatic embryos of Norway Spruce (Picea abies /L./ Karst.) and maize plants (Zea mays L.) treated with cadmium(II) ions. The paramagnetic particles were evaluated for analysis of real samples, and poly-adenine was used as a model mRNA. Various approaches (from non-automatic to fully automatic) were tested in terms of handling the particles.
Figa
Microfluidic robotic device coupled with electrochemical sensor field  相似文献   

9.
Resolving power of about 12,000 000 at m/z 675 has been achieved on low field homogeneity 4.7 T magnet using a dynamically harmonized Fourier transform ion cyclotron resonance (FT ICR) cell. Mass spectra of the fine structure of the isotopic distribution of a peptide were obtained and strong discrimination of small intensity peaks was observed in case of resonance excitation of the ions of the whole isotopic cluster to the same cyclotron radius. The absence of some peaks from the mass spectra of the fine structure was explained basing on results of computer simulations showing strong ion cloud interactions, which cause the coalescence of peaks with m/z close to that of the highest magnitude peak. The way to prevent peak discrimination is to excite ion clouds of different m/z to different cyclotron radii, which was demonstrated and investigated both experimentally and by computer simulations.
Figure
?  相似文献   

10.
Phenylketonuria (PKU) is commonly included in the newborn screening panel of most countries, with various techniques being used for quantification of l-phenylalanine (Phe). To diagnose PKU as early as possible in newborn screening, a rapid and simple method of analysis was developed. Using direct analysis in real time (DART) ionization coupled with triple-quadrupole tandem mass spectrometry (TQ-MS/MS) and with use of a 12 DIP-it tip scanner autosampler in positive ion mode, we analyzed dried blood spot (DBS) samples from PKU newborns. The concentration of Phe was determined using multiple reaction monitoring mode with the nondeuterated internal standard N,N-dimethylphenylalanine. The results of the analysis of DBS samples from newborns indicated that the DART-TQ-MS/MS method is fast, accurate, and reproducible. The results prove that this assay as a newborn screen for PKU can be performed in 18 s per sample for the quantification of Phe in DBS samples. DART-TQ-MS/MS analysis of the Phe concentration in DBS samples allowed us to screen newborns for PKU. This innovative protocol is rapid and can be effectively applied on a routine basis to analyze a large number of samples in PKU newborn screening and PKU patient monitoring.
Figure
The method can quantify the amount of phenylalanine in dried blood spot of newborn by using direct analysis in real time (DART) coupled with triple-quadrupole tandem mass spectrometry  相似文献   

11.
Large polarizable n-alkanes (approximately C18 and larger), alcohols, and other nonpolar compounds can be detected as negative ions when sample solutions are injected directly into the sampling orifice of the atmospheric pressure interface of the time-of-flight mass spectrometer with the direct analysis in real time (DART) ion source operating in negative-ion mode. The mass spectra are dominated by peaks corresponding to [M + O2] ̄?. No fragmentation is observed, making this a very soft ionization technique for samples that are otherwise difficult to analyze by DART. Detection limits for cholesterol were determined to be in the low nanogram range.
Figure
?  相似文献   

12.
There has been growing interest in exhaled breath analysis for cancer screening and disease monitoring; however, limited breath biomarker information exists regarding colorectal cancer (CRC). The objective of this study was to screen for breath biomarkers of CRC. Exhaled breath was collected from 20 CRC patients and 20 healthy controls; subsequently, solid-phase microextraction–gas chromatography/mass spectrometry (SPME-GC/MS) was used to assess the exhaled volatile organic compounds (VOCs) of the study participants. The statistical methods of principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were performed to process the final data. The VOCs in the exhalations of CRC patients exhibited significant differences from the VOCs in the exhalations of healthy controls; in particular, relative to the latter exhalations, the former exhalations contain significantly higher levels of cyclohexanone, 2,2-dimethyldecane, dodecane, 4-ethyl-1-octyn-3-ol, ethylaniline, cyclooctylmethanol, trans-2-dodecen-1-ol, and 3-hydroxy-2,4,4-trimethylpentyl 2-methylpropanoate but significantly lower levels of 6-t-butyl-2,2,9,9-tetramethyl-3,5-decadien-7-yne (P?<?0.05). Analyses of breath VOCs provide a related model of CRC exhalation that could represent an effective and convenient screening method for this disease.
Figure
Partial least-squares discriminant analysis scores plot (with the three components of R2X=0.583, R2Y=0.806, and Q2=0.565), which reveals that a considerable separation was achieved between colorectal cancer breath samples and normal controls  相似文献   

13.
Metabonomics has become a very valuable tool and many research fields rely on results coming out from this combination of analytical techniques, chemometric strategies, and biological interpretation. Moreover, the matrices are more and more complex and the implications of the results are often of major importance. In this context, the need for pertinent validation strategies comes naturally. The choice of the appropriate chemometric method remains nevertheless a difficult task due to particularities such as: the number of measured variables, the complexity of the matrix and the purposes of the study. Consequently, this paper presents a detailed metabonomic study on human urine with a special emphasis on the importance of assessing the data's quality. It also describes, step by step, the statistical tools currently used and offers a critical view on some of their limits. In this work, 29 urine samples among which 15 samples obtained from tetrahydrocannabinol (delta-9-tetrahydrocannabinol)-consuming athletes, 5 samples provided by volunteers, and 9 samples obtained from athletes were submitted to untargeted analysis by means of ultra high-pressure liquid chromatography–electrospray ionization–time-of-flight mass spectrometry. Next, the quality of the obtained data was assessed and the results were compared to those found in databases. Then, unsupervised (principal component analysis (PCA)) and supervised (ANOVA/PCA, partial least-square–discriminant analysis (PLS-DA), orthogonal PLS-DA) univariate and multivariate statistical methods were applied.
Figure
?  相似文献   

14.
The solvent extraction of fourteen lanthanoid ions with thenoyltrifluoroacetone (HTTA) in combination with tetraethyl 4-tert-butylcalix[4]arene-tetraacetic acid tetraethyl ester (S) from a perchlorate medium at constant ionic strength was investigated. The extracted species were identified as the Ln(TTA)3·S complexes by slope analysis. Equilibrium constants, parameters for extraction, and the synergistic and separation factors between two adjacent Ln(III) ions were determined.
Online abstract
The solvent extraction of 14 lanthanoids (Ln) with thenoyltrifluoroacetone (HTTA) in combination with 4-tert-butylcalix[4]arene-tetraacetic acid tetraethyl ester (S) is investigated. The composition of the extracted species has been found as Ln(TTA)3·S. The values of the equilibrium constants, the synergistic and separation factors between two adjacent Ln(III) ions have been calculated.  相似文献   

15.
Food and contaminated indoor environments are the most relevant sources of human exposure to polyhalogenated chemicals. This study analyzed for the first time fat residues in kitchen hoods for contaminations with polyhalogenated compounds. A wide range of contaminants was detected in all kitchen hoods (n?=?15) and most of them could be quantified. Between 0.2 and 18 μg polyhalogenated chemicals/g fat were detected, with chlorinated paraffins being the most relevant contaminant group. Aside from the chlorinated paraffins, each kitchen hood fat sample showed a distinct fingerprint. A wide range of old and current-use brominated flame retardants were also detected in the samples. In addition to these contaminants originating from their use in indoor equipment, residues of organochlorine pesticides and semi-volatile halogenated natural products verified that cooking of food, accompanied with the release of contaminants from the heated food, was another relevant source of contamination. Re-analyses of two samples after 3 months only resulted in small variations in contaminant pattern and concentrations. Therefore, fat from kitchen hoods is proposed as an easily accessible matrix to assess contamination of these hazardous polyhalogenated chemicals.
Figure
Picture of a kitchen hood and its filter. The fat collected from kitchen hood filters contained plenty of polyhalogenated chemicals  相似文献   

16.
An electrophoretically mediated microanalysis assay (EMMA) for the determination of the stereoselective reduction of l-methionine sulfoxide diastereomers by methionine sulfoxide reductase enzymes was developed using fluorenylmethyloxycarbonyl (Fmoc)-l-methionine sulfoxide as substrate. The separation of the diastereomers of Fmoc-l-methionine sulfoxide and the product Fmoc-l-methionine was achieved in a successive multiple ionic-polymer layer-coated capillary using a 50 mM Tris buffer, pH 8.0, containing 30 mM sodium dodecyl sulfate as background electrolyte and an applied voltage of 25 kV. 4-Aminobenzoic acid was employed as internal standard. An injection sequence of incubation buffer, enzyme, substrate, enzyme, and incubation buffer was selected. The assay was optimized with regard to mixing time and mixing voltage and subsequently applied for the analysis of stereoselective reduction of Fmoc-l-methionine-(S)-sulfoxide by human methionine sulfoxide reductase A and of the Fmoc-l-methionine-(R)-sulfoxide by human methionine sulfoxide reductase B. The Michaelis–Menten constant, K m, and the maximum velocity, v max, were determined. Essentially identical data were determined by the electrophoretically mediated microanalysis assay and the analysis of the samples by CE upon offline incubation. Furthermore, it was shown for the first time that Fmoc-methionine-(R)-sulfoxide is a substrate of human methionine sulfoxide reductase B.
Figure
Stereospecific EMMA for methionine sulfoxide reductase enzymes Methionine sulfoxide [Met(O)] which may be generated via oxidation by reactive oxygen species (ROS) is reduced by methionine sulfoxide reductase (Msr) enzymes in a stereospecific manner. The present assay allows the in-capillary incubation of recombinant human Msr enzymes followed by separation and analysis of the Met(O) diastereomers as well as the product methionine.  相似文献   

17.
The topology of the GCAP-2 homodimer was investigated by chemical cross-linking and high resolution mass spectrometry. Complementary conducted size-exclusion chromatography and analytical ultracentrifugation studies indicated that GCAP-2 forms a homodimer both in the absence and in the presence of Ca2+. In-depth MS and MS/MS analysis of the cross-linked products was aided by 15 ? N-labeled GCAP-2. The use of isotope-labeled protein delivered reliable structural information on the GCAP-2 homodimer, enabling an unambiguous discrimination between cross-links within one monomer (intramolecular) or between two subunits (intermolecular). The limited number of cross-links obtained in the Ca2+-bound state allowed us to deduce a defined homodimeric GCAP-2 structure by a docking and molecular dynamics approach. In the Ca2+-free state, GCAP-2 is more flexible as indicated by the higher number of cross-links. We consider stable isotope-labeling to be indispensable for deriving reliable structural information from chemical cross-linking data of multi-subunit protein assemblies.
Figure
?  相似文献   

18.
Contaminated meat and bone meal (MBM) in animal feedstuff has been the source of bovine spongiform encephalopathy (BSE) disease in cattle, leading to a ban in its use, so methods for its detection are essential. In this study, five pure feed and five pure MBM samples were used to prepare two sets of sample arrangements: set A for investigating the discrimination of individual feed/MBM particles and set B for larger numbers of overlapping particles. The two sets were used to test a Markov random field (MRF)-based approach. A Fourier transform infrared (FT-IR) imaging system was used for data acquisition. The spatial resolution of the near-infrared (NIR) spectroscopic image was 25 μm?×?25 μm. Each spectrum was the average of 16 scans across the wavenumber range 7,000-4,000 cm?1, at intervals of 8 cm?1. This study introduces an innovative approach to analyzing NIR spectroscopic images: an MRF-based approach has been developed using the iterated conditional mode (ICM) algorithm, integrating initial labeling-derived results from support vector machine discriminant analysis (SVMDA) and observation data derived from the results of principal component analysis (PCA). The results showed that MBM covered by feed could be successfully recognized with an overall accuracy of 86.59 % and a Kappa coefficient of 0.68. Compared with conventional methods, the MRF-based approach is capable of extracting spectral information combined with spatial information from NIR spectroscopic images. This new approach enhances the identification of MBM using NIR spectroscopic imaging.
Figure
?  相似文献   

19.
The application of microwave-assisted extraction (MAE) to the work-up of environmental and biological samples in the study of mercury speciation analysis has increased in recent years and is now increasingly accepted as a standard approach. The review provides a brief theoretical background of microwave heating and the basic principles of microwave energy used for extraction. The advantages and disadvantages of (a) MAE techniques, (b) the influence of the main parameters affecting the extraction, (c) statistical optimization approaches, and (d) strategies for method validation also are highlighted. Recent applications of MAE to mercury species analyses in biological samples, soils, sediments, and crude oil samples are surveyed and critically reviewed. In addition, comparisons of its use with other well-established extraction procedures are discussed.
Figure
Microwave-assisted extraction has become a very useful sample preparation techniques in the study of mercury speciation in environmental and biological samples  相似文献   

20.
A new sense-and-act system was realized by integrating a biocatalytic/bioaffinity electrode responding to immune signals represented by an antibody and a polymer-modified electrode loaded with drug-mimicking species. The release of the drug-mimicking species was achieved specifically in response to a signal antibody, thus demonstrating for the first time an immune-induced drug-releasing process. The present approach promises new options for future applications in controlled drug release and personalized medicine.
Figure
Electrochemical immune-sensing system was integrated with the substance-releasing modified electrode to demonstrate the immune-triggered drug release process  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号