首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper we give criteria for a finite group to belong to a formation. As applications, recent theorems of Li, Shen, Shi and Qian are generalized. Let G  be a finite group, $\cal F$ a formation and p  a prime. Let $D_{\mathcal {F}}(G)$ be the intersection of the normalizers of the $\cal F$ -residuals of all subgroups of G, and let $D_{\mathcal {F}}^{p}(G)$ be the intersection of the normalizers of $(H^{\cal F}O_{p'}(G))$ for all subgroups H of G. We then define $D_{\mathcal F}^{0}(G)=D_{\mathcal F, p}^{~0}(G)=1$ and $D_{\mathcal F}^{i+1}(G)/D_{\mathcal F}^{i}(G)=D_{\mathcal F}(G/D_{\mathcal F}^{i}(G))$ , $D_{\mathcal F, p}^{i+1}(G)/D_{\mathcal F, p}^{~i}(G)=D_{\mathcal F, p}(G/D_{\mathcal F, p}^{~i}(G))$ . Let $D_{\mathcal {F}}^{\infty}(G)$ and $D_{\mathcal {F}, p}^{~\infty}(G)$ denote the terminal member of the ascending series of $D_{\mathcal F}^{i}(G)$ and $D_{\mathcal F, p}^{~i}(G)$ respectively. In this paper we prove that under certain hypotheses, the the $\cal F$ -residual $G^{\cal F}$ is nilpotent (respectively,p-nilpotent) if and only if $G=D_{\mathcal {F}}^{\infty}(G)$ (respectively, $G=D_{\mathcal {F}, p}^{~\infty}(G)$ ). Further more, if the formation $\cal F$ is either the class of all nilpotent groups or the class of all abelian groups, then $G^{\cal F}$ is p-nilpotent if and only if and only if every cyclic subgroup of G order p and 4 (if p?=?2) is contained in $D_{\mathcal {F}, p}^{~\infty}(G)$ .  相似文献   

2.
This paper concerns the existence and asymptotic characterization of saddle solutions in ${\mathbb {R}^{3}}$ for semilinear elliptic equations of the form $$-\Delta u + W'(u) = 0,\quad (x, y, z) \in {\mathbb {R}^{3}} \qquad\qquad\qquad (0.1)$$ where ${W \in \mathcal{C}^{3}(\mathbb {R})}$ is a double well symmetric potential, i.e. it satisfies W(?s) =  W(s) for ${s \in \mathbb {R},W(s) > 0}$ for ${s \in (-1,1)}$ , ${W(\pm 1) = 0}$ and ${W''(\pm 1) > 0}$ . Denoted with ${\theta_{2}}$ the saddle planar solution of (0.1), we show the existence of a unique solution ${\theta_{3} \in {\mathcal{C}^{2}}(\mathbb {R}^{3})}$ which is odd with respect to each variable, symmetric with respect to the diagonal planes, verifies ${0 < \theta_{3}(x,y,z) < 1}$ for x, y, z >  0 and ${\theta_{3}(x, y, z) \to_{z \to + \infty} \theta_{2}(x, y)}$ uniformly with respect to ${(x, y) \in \mathbb {R}^{2}}$ .  相似文献   

3.
We consider proper holomorphic maps ${\pi : D\rightarrow G}$ , where D and G are domains in ${\mathbb{C}^{n}}$ . Let ${\alpha\in \mathcal{C}(G,\mathbb{R}_{ > 0})}$ . We show that every π induces some subspace H of ${\mathbb{A}^{2}_{\alpha\circ\pi}(D)}$ such that ${\mathbb{A}^{2}_{\alpha}(G)}$ is isometrically isomorphic to H via some unitary operator Γ. Using this isomorphism we construct the orthogonal projection onto H, and we derive Bell’s transformation formula for the weighted Bergman kernel function under proper holomorphic mappings. As a consequence of the formula, we get that the tetrablock is not a Lu Qi-Keng domain.  相似文献   

4.
In this paper, we prove that every lax generalized Veronesean embedding of the Hermitian unital ${\mathcal{U}}$ of ${\mathsf{PG}(2,\mathbb{L}), \mathbb{L}}$ a quadratic extension of the field ${\mathbb{K}}$ and ${|\mathbb{K}| \geq 3}$ , in a ${\mathsf{PG}(d,\mathbb{F})}$ , with ${\mathbb{F}}$ any field and d ≥ 7, such that disjoint blocks span disjoint subspaces, is the standard Veronesean embedding in a subgeometry ${\mathsf{PG}(7,\mathbb{K}^{\prime})}$ of ${\mathsf{PG}(7,\mathbb{F})}$ (and d = 7) or it consists of the projection from a point ${p \in \mathcal{U}}$ of ${\mathcal{U}{\setminus} \{p\}}$ from a subgeometry ${\mathsf{PG}(7,\mathbb{K}^{\prime})}$ of ${\mathsf{PG}(7,\mathbb{F})}$ into a hyperplane ${\mathsf{PG}(6,\mathbb{K}^{\prime})}$ . In order to do so, when ${|\mathbb{K}| >3 }$ we strongly use the linear representation of the affine part of ${\mathcal{U}}$ (the line at infinity being secant) as the affine part of the generalized quadrangle ${\mathsf{Q}(4,\mathbb{K})}$ (the solid at infinity being non-singular); when ${|\mathbb{K}| =3}$ , we use the connection of ${\mathcal{U}}$ with the generalized hexagon of order 2.  相似文献   

5.
Let ${\Phi_0(\boldmath{z})}$ be the function defined by $$\Phi_0({\boldmath z}) = \Phi _{0}(z_1,\ldots, z_m)=\sum_{k\geq 0}\frac{E_k(z_1^{r^k},\ldots,z_m^{r^k})}{F_k(z_1^{r^k},\ldots,z_m^{r^k})},$$ where ${E_k(\boldmath{z})}$ and ${F_k(\boldmath{z})}$ are polynomials in m variables ${\boldmath{z} = (z_1,\ldots, z_m)}$ with coefficients satisfying a weak growth condition and r ≥ 2 a fixed integer. For an algebraic point ${\boldmath{\alpha}}$ satisfying some conditions, we prove that ${\Phi_{0}(\boldmath{\alpha})}$ is algebraic if and only if ${\Phi_{0}(\boldmath{z})}$ is a rational function. This is a generalization of the transcendence criterion of Duverney and Nishioka in one variable case. As applications, we give some examples of transcendental numbers.  相似文献   

6.
Let ${\nu_{d} : \mathbb{P}^{r} \rightarrow \mathbb{P}^{N}, N := \left( \begin{array}{ll} r + d \\ \,\,\,\,\,\, r \end{array} \right)- 1,}$ denote the degree d Veronese embedding of ${\mathbb{P}^{r}}$ . For any ${P\, \in \, \mathbb{P}^{N}}$ , the symmetric tensor rank sr(P) is the minimal cardinality of a set ${\mathcal{S} \subset \nu_{d}(\mathbb{P}^{r})}$ spanning P. Let ${\mathcal{S}(P)}$ be the set of all ${A \subset \mathbb{P}^{r}}$ such that ${\nu_{d}(A)}$ computes sr(P). Here we classify all ${P \,\in\, \mathbb{P}^{n}}$ such that sr(P) <  3d/2 and sr(P) is computed by at least two subsets of ${\nu_{d}(\mathbb{P}^{r})}$ . For such tensors ${P\, \in\, \mathbb{P}^{N}}$ , we prove that ${\mathcal{S}(P)}$ has no isolated points.  相似文献   

7.
Given a vector field ${\mathfrak{a}}$ on ${\mathbb{R}^3}$ , we consider a mapping ${x\mapsto \Pi_{\mathfrak{a}}(x)}$ that assigns to each ${x\in\mathbb{R}^3}$ , a plane ${\Pi_{\mathfrak{a}}(x)}$ containing x, whose normal vector is ${\mathfrak{a}(x)}$ . Associated with this mapping, we define a maximal operator ${\mathcal{M}^{\mathfrak{a}}_N}$ on ${L^1_{loc}(\mathbb{R}^3)}$ for each ${N\gg 1}$ by $$\mathcal{M}^{\mathfrak{a}}_Nf(x)=\sup_{x\in\tau} \frac{1}{|\tau|} \int_{\tau}|f(y)|\,dy$$ where the supremum is taken over all 1/N ×? 1/N?× 1 tubes τ whose axis is embedded in the plane ${\Pi_\mathfrak{a}(x)}$ . We study the behavior of ${\mathcal{M}^{\mathfrak{a}}_N}$ according to various vector fields ${\mathfrak{a}}$ . In particular, we classify the operator norms of ${\mathcal{M}^{\mathfrak{a}}_N}$ on ${L^2(\mathbb{R}^3)}$ when ${\mathfrak{a}(x)}$ is the linear function of the form (a 11 x 1?+?a 21 x 2, a 12 x 1?+?a 22 x 2, 1). The operator norm of ${\mathcal{M}^\mathfrak{a}_N}$ on ${L^2(\mathbb{R}^3)}$ is related with the number given by $$D=(a_{12}+a_{21})^2-4a_{11}a_{22}.$$   相似文献   

8.
Let ${\mathfrak{a}}$ be an ideal of a commutative Noetherian ring R and M a finitely generated R-module. It is shown that ${{\rm Ann}_R(H_{\mathfrak{a}}^{{\rm dim} M}(M))= {\rm Ann}_R(M/T_R(\mathfrak{a}, M))}$ , where ${T_R(\mathfrak{a}, M)}$ is the largest submodule of M such that ${{\rm cd}(\mathfrak{a}, T_R(\mathfrak{a}, M)) < {\rm cd}(\mathfrak{a}, M)}$ . Several applications of this result are given. Among other things, it is shown that there exists an ideal ${\mathfrak{b}}$ of R such that ${{\rm Ann}_R(H_{\mathfrak{a}}^{{\rm dim} M}(M))={\rm Ann}_R(M/H_{\mathfrak{b}}^{0}(M))}$ . Using this, we show that if ${ H_{\mathfrak{a}}^{{\rm dim} R}(R)=0}$ , then ${{{\rm Att}_R} H^{{\rm dim} R-1}_{\mathfrak a}(R)= \{\mathfrak{p} \in {\rm Spec} R | \,{\rm cd}(\mathfrak{a}, R/\mathfrak{p}) = {\rm dim} R-1\}.}$ These generalize the main results of Bahmanpour et al. (see [2, Theorem 2.6]), Hellus (see [7, Theorem 2.3]), and Lynch (see [10, Theorem 2.4]).  相似文献   

9.
We construct a simply connected complete bounded mean curvature one surface in the hyperbolic 3-space ${\mathcal {H}^3}$ . Such a surface in ${\mathcal {H}^3}$ can be lifted as a complete bounded null curve in ${\rm {SL}(2,\mathbb {C})}$ . Using a transformation between null curves in ${\mathbb {C}^3}$ and null curves in ${\rm {SL}(2,\mathbb {C})}$ , we are able to produce the first examples of complete bounded null curves in ${\mathbb {C}^3}$ . As an application, we can show the existence of a complete bounded minimal surface in ${\mathbb {R}^3}$ whose conjugate minimal surface is also bounded. Moreover, we can show the existence of a complete bounded immersed complex submanifold in ${\mathbb {C}^2}$ .  相似文献   

10.
Let M be a shift invariant subspace in the vector-valued Hardy space ${H_{E}^{2}(\mathbb{D})}$ H E 2 ( D ) . The Beurling–Lax–Halmos theorem says that M can be completely characterized by ${\mathcal{B}(E)}$ B ( E ) -valued inner function ${\Theta}$ Θ . When ${E = H^{2}(\mathbb{D}),\,H_{E}^{2}(\mathbb{D})}$ E = H 2 ( D ) , H E 2 ( D ) is the Hardy space on the bidisk ${H^{2}(\mathbb{D}^2)}$ H 2 ( D 2 ) . Recently, Qin and Yang (Proc Am Math Soc, 2013) determines the operator valued inner function ${\Theta(z)}$ Θ ( z ) for two well-known invariant subspaces in ${H^{2}(\mathbb{D}^{2})}$ H 2 ( D 2 ) . This paper generalizes the ${\Theta(z)}$ Θ ( z ) by Qin and Yang (Proc Am Math Soc, 2013) and deal with the structure of ${M = {\Theta}(z)H^{2}(\mathbb{D}^{2})}$ M = Θ ( z ) H 2 ( D 2 ) when M is an invariant subspace in ${H^{2}(\mathbb{D}^{2})}$ H 2 ( D 2 ) . Unitary equivalence, spectrum of the compression operator and core operator are studied in this paper.  相似文献   

11.
Consider the real Clifford algebra ${\mathbb{R}_{0,n}}$ generated by e 1, e 2, . . . , e n satisfying ${e_{i}e_{j} + e_{j}e_{i} = -2\delta_{ij} , i, j = 1, 2, . . . , n, e_{0}}$ is the unit element. Let ${\Omega}$ be an open set in ${\mathbb{R}^{n+1}}$ . u(x) is called an h-regular function in ${\Omega}$ if $$D_{x}u(x) + \widehat{u}(x)h = 0, \quad\quad (0.1)$$ where ${D_x = \sum\limits_{i=0}^{n} e_{i}\partial_{xi}}$ is the Dirac operator in ${\mathbb{R}^{n+1}}$ , and ${\widehat{u}(x) = \sum \limits_{A} (-1)^{\#A}u_{A}(x)e_{A}, \#A}$ denotes the cardinality of A and ${h = \sum\limits_{k=0}^{n} h_{k}e_{k}}$ is a constant paravector. In this paper, we mainly consider the Hilbert boundary value problem (BVP) for h-regular functions in ${\mathbb{R}_{+}^{n+1}}$ .  相似文献   

12.
Let $ {\user1{\mathcal{C}}} $ be the commuting variety of the Lie algebra $ \mathfrak{g} $ of a connected noncommutative reductive algebraic group G over an algebraically closed field of characteristic zero. Let $ {\user1{\mathcal{C}}}^{{{\text{sing}}}} $ be the singular locus of $ {\user1{\mathcal{C}}} $ and let $ {\user1{\mathcal{C}}}^{{{\text{irr}}}} $ be the locus of points whose G-stabilizers have dimension > rk G. We prove that: (a) $ {\user1{\mathcal{C}}}^{{{\text{sing}}}} $ is a nonempty subset of $ {\user1{\mathcal{C}}}^{{{\text{irr}}}} $ ; (b) $ {\text{codim}}_{{\user1{\mathcal{C}}}} \,{\user1{\mathcal{C}}}^{{{\text{irr}}}} = 5 - {\text{max}}\,l{\left( \mathfrak{a} \right)} $ where the maximum is taken over all simple ideals $ \mathfrak{a} $ of $ \mathfrak{g} $ and $ l{\left( \mathfrak{a} \right)} $ is the “lacety” of $ \mathfrak{a} $ ; and (c) if $ \mathfrak{t} $ is a Cartan subalgebra of $ \mathfrak{g} $ and $ \alpha \in \mathfrak{t}^{*} $ root of $ \mathfrak{g} $ with respect to $ \mathfrak{t} $ , then $ \overline{{G{\left( {{\text{Ker}}\,\alpha \times {\text{Ker }}\alpha } \right)}}} $ is an irreducible component of $ {\user1{\mathcal{C}}}^{{{\text{irr}}}} $ of codimension 4 in $ {\user1{\mathcal{C}}} $ . This yields the bound $ {\text{codim}}_{{\user1{\mathcal{C}}}} \,{\user1{\mathcal{C}}}^{{{\text{sing}}}} \geqslant 5 - {\text{max}}\,l{\left( \mathfrak{a} \right)} $ and, in particular, $ {\text{codim}}_{{\user1{\mathcal{C}}}} \,{\user1{\mathcal{C}}}^{{{\text{sing}}}} \geqslant 2 $ . The latter may be regarded as an evidence in favor of the known longstanding conjecture that $ {\user1{\mathcal{C}}} $ is always normal. We also prove that the algebraic variety $ {\user1{\mathcal{C}}} $ is rational.  相似文献   

13.
Given Banach spaces X and Y, we show that, for each operator-valued analytic map ${\alpha \in \mathcal O (D,\mathcal L(Y,X))}$ satisfying the finiteness condition ${\dim (X/\alpha (z)Y) < \infty}$ pointwise on an open set D in ${\mathbb {C}^n}$ , the induced multiplication operator ${\mathcal O(U,Y) \stackrel{\alpha}{\longrightarrow} \mathcal O (U,X)}$ has closed range on each Stein open set ${U \subset D}$ . As an application we deduce that the generalized range ${{\rm R}^{\infty}(T) = \bigcap_{k \geq 1}\sum_{| \alpha | = k} T^{\alpha}X}$ of a commuting multioperator ${T \in \mathcal L(X)^n}$ with ${\dim(X/\sum_{i=1}^n T_iX) < \infty}$ can be represented as a suitable spectral subspace.  相似文献   

14.
In this note we prove the following: Let n?≥ 2 be a fixed integer. A system of additive functions ${A_{1},A_{2},\ldots,A_{n}:\mathbb{R} \to\mathbb{R}}$ is linearly dependent (as elements of the ${\mathbb{R}}$ vector space ${\mathbb{R}^{\mathbb{R}}}$ ), if and only if, there exists an indefinite quadratic form ${Q:\mathbb{R}^{n}\to\mathbb{R} }$ such that ${Q(A_{1}(x),A_{2}(x),\ldots,A_{n}(x))\geq 0}$ or ${Q(A_{1}(x),A_{2}(x),\ldots,A_{n}(x))\leq 0}$ holds for all ${x\in\mathbb{R}}$ .  相似文献   

15.
Let ${G: \mathbb {C}^{n-1} \rightarrow \mathbb {C}}$ be holomorphic such that G(0)?=?0 and DG(0)?=?0. When f is a convex (resp. starlike) normalized (f(0)?=?0, f??(0)?=?1) univalent mapping of the unit disk ${\mathbb {D}}$ in ${\mathbb {C}}$ , then the extension of f to the Euclidean unit ball ${\mathbb {B}}$ in ${\mathbb {C}^n}$ given by ${\Phi_G(f)(z)=(f(z_1)+G(\sqrt{f^{\prime}(z_1)} \, \hat{z}),\sqrt{f^{\prime}(z_1)}\, \hat{z})}$ , ${\hat{z}=(z_2,\dots,z_n) \in \mathbb {C}^{n-1}}$ , is known to be convex (resp. starlike) if G is a homogeneous polynomial of degree 2 with sufficiently small norm. Conversely, it is known that G cannot have terms of degree greater than 2 in its expansion about 0 in order for ${\Phi_G(f)}$ to be convex (resp. starlike), in general. We examine whether the restriction that f be either convex or starlike of a certain order ${\alpha \in (0,1]}$ allows, in general, for G to contain terms of degree greater than 2 and still have ${\Phi_G(f)}$ maintain the respective geometric property. Related extension results for convex and starlike Bloch mappings are also given.  相似文献   

16.
Let ${N \geq 3}$ and u be the solution of u t = Δ log u in ${\mathbb{R}^N \times (0, T)}$ with initial value u 0 satisfying ${B_{k_1}(x, 0) \leq u_{0} \leq B_{k_2}(x, 0)}$ for some constants k 1k 2 > 0 where ${B_k(x, t) = 2(N - 2)(T - t)_{+}^{N/(N - 2)}/(k + (T - t)_{+}^{2/(N - 2)}|x|^{2})}$ is the Barenblatt solution for the equation and ${u_0 - B_{k_0} \in L^{1}(\mathbb{R}^{N})}$ for some constant k 0 > 0 if ${N \geq 4}$ . We give a new different proof on the uniform convergence and ${L^1(\mathbb{R}^N)}$ convergence of the rescaled function ${\tilde{u}(x, s) = (T - t)^{-N/(N - 2)}u(x/(T - t)^{-1/(N - 2)}, t), s = -{\rm log}(T - t)}$ , on ${\mathbb{R}^N}$ to the rescaled Barenblatt solution ${\tilde{B}_{k_0}(x) = 2(N - 2)/(k_0 + |x|^{2})}$ for some k 0 > 0 as ${s \rightarrow \infty}$ . When ${N \geq 4, 0 \leq u_0(x) \leq B_{k_0}(x, 0)}$ in ${\mathbb{R}^N}$ , and ${|u_0(x) - B_{k_0}(x, 0)| \leq f \in L^{1}(\mathbb{R}^{N})}$ for some constant k 0 > 0 and some radially symmetric function f, we also prove uniform convergence and convergence in some weighted L 1 space in ${\mathbb{R}^N}$ of the rescaled solution ${\tilde{u}(x, s)}$ to ${\tilde{B}_{k_0}(x)}$ as ${s \rightarrow \infty}$ .  相似文献   

17.
For an analytic self-map ?? of the unit disk ${\mathbb{D}}$ and an analytic function g on ${\mathbb{D}}$ , we define the following integral type operators: $$T_{\varphi}^{g}f(z) := \int_{0}^{z} f(\varphi(\zeta))g(\zeta) d\zeta\quad {\rm and}\quad C_{\varphi}^{g}f(z) := \int_{0}^{z}f^{\prime}(\varphi(\zeta))g(\zeta) d\zeta$$ . We give a characterization for the boundedness and compactness of these operators from the weighted Bergman space ${L_{a}^p(dA_{\alpha})}$ into the ??-Zygmund space ${\mathcal{Z}_{\beta}}$ . We will also estimate the essential norm of these type of operators. As an application of results, we characterize the above operator-theoretic properties of Volterra type integral operators and composition operators.  相似文献   

18.
Starting from two Lagrangian immersions and a Legendre curve ${\tilde{\gamma}(t)}$ in ${\mathbb{S}^3(1)}$ $({\rm or\,in}\,{\mathbb{H}_1^3(-1)})$ , it is possible to construct a new Lagrangian immersion in ${\mathbb{CP}^n(4)}$ $({\rm or\,in}\,{\mathbb{CH}^n(-4)})$ , which is called a warped product Lagrangian immersion. When ${\tilde{\gamma}(t)=(r_1e^{i(\frac{r_2}{r_1}at)}, \;r_2e^{i(- \frac{r_1}{r_2}at)})}$ $({\rm or}\,{\tilde{\gamma}(t)=(r_1e^{i(\frac{r_2}{r_1}at)}, \;r_2e^{i( \frac{r_1}{r_2}at)})})$ , where r 1, r 2, and a are positive constants with ${r_1^2+r_2^2=1}$ $({\rm or}\,{-r_1^2+r_2^2=-1})$ , we call the new Lagrangian immersion a Calabi product Lagrangian immersion. In this paper, we study the inverse problem: how to determine from the properties of the second fundamental form whether a given Lagrangian immersion of ${\mathbb{CP}^n(4)}$ or ${\mathbb{CH}^n(-4)}$ is a Calabi product Lagrangian immersion. When the Calabi product is minimal, or is Hamiltonian minimal, or has parallel second fundamental form, we give some further characterizations.  相似文献   

19.
Let $\mathcal{G}(z):=\sum_{n\geqslant0} z^{2^{n}}(1-z^{2^{n}})^{-1}$ denote the generating function of the ruler function, and $\mathcal {F}(z):=\sum_{n\geqslant} z^{2^{n}}(1+z^{2^{n}})^{-1}$ ; note that the special value $\mathcal{F}(1/2)$ is the sum of the reciprocals of the Fermat numbers $F_{n}:=2^{2^{n}}+1$ . The functions $\mathcal{F}(z)$ and $\mathcal{G}(z)$ as well as their special values have been studied by Mahler, Golomb, Schwarz, and Duverney; it is known that the numbers $\mathcal {F}(\alpha)$ and $\mathcal{G}(\alpha)$ are transcendental for all algebraic numbers α which satisfy 0<α<1. For a sequence u, denote the Hankel matrix $H_{n}^{p}(\mathbf {u}):=(u({p+i+j-2}))_{1\leqslant i,j\leqslant n}$ . Let α be a real number. The irrationality exponent μ(α) is defined as the supremum of the set of real numbers μ such that the inequality |α?p/q|<q ?μ has infinitely many solutions (p,q)∈?×?. In this paper, we first prove that the determinants of $H_{n}^{1}(\mathbf {g})$ and $H_{n}^{1}(\mathbf{f})$ are nonzero for every n?1. We then use this result to prove that for b?2 the irrationality exponents $\mu(\mathcal{F}(1/b))$ and $\mu(\mathcal{G}(1/b))$ are equal to 2; in particular, the irrationality exponent of the sum of the reciprocals of the Fermat numbers is 2.  相似文献   

20.
Triebel (J Approx Theory 35:275–297, 1982; 52:162–203, 1988) investigated the boundary values of the harmonic functions in spaces of the Triebel–Lizorkin type ${\mathcal F^{\alpha,q}_{p}}$ on ${\mathbb{R}^{n+1}_+}$ by finding an characterization of the homogeneous Triebel–Lizorkin space ${{\bf \dot{F}}^{\alpha,q}_p}$ via its harmonic extension, where ${0 < p < \infty, 0 < q \leq \infty}$ , and ${\alpha < {\rm min}\{-n/p, -n/q\}}$ . In this article, we extend Triebel’s result to α < 0 and ${0 < p, q \leq \infty}$ by using a discrete version of reproducing formula and discretizing the norms in both ${\mathcal{F}^{\alpha,q}_{p}}$ and ${{\bf{\dot{F}}}^{\alpha,q}_p}$ . Furthermore, for α < 0 and ${1 < p,q \leq \infty}$ , the mapping from harmonic functions in ${\mathcal{F}^{\alpha,q}_{p}}$ to their boundary values forms a topological isomorphism between ${\mathcal{F}^{\alpha,q}_{p}}$ and ${{\bf \dot{F}}^{\alpha,q}_p}$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号