首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Ammoxidation of carbon materials for CO2 capture   总被引:1,自引:0,他引:1  
Ammoxidised carbons were produced from three different starting materials: an activated carbon obtained from wood by chemical activation using the phosphoric acid process, a steam activated peat-based carbon, and a char obtained from a low-cost biomass feedstock, olive stones. Nitrogen was successfully incorporated into the carbon matrix of the different materials, the amount of nitrogen uptake being proportional to the oxygen content of the precursor. At room temperature the CO2 capture capacity of the samples was found to be related to the narrow micropore volume, while at 100 °C other factors such as surface basicity took on more relevance. At 100 °C all the ammoxidised samples presented an enhancement in CO2 uptake compared to the parent carbons.  相似文献   

2.
The control of the surface chemistry of activated carbon by ozone and heat treatment is investigated. Using cherry stones, activated carbons were prepared by carbonization at 900 °C and activation in CO2 or steam at 850 °C. The obtained products were ozone-treated at room temperature. After their thermogravimetric analysis, the samples were heat-treated to 300, 500, 700 or 900 °C. The textural characterization was carried out by N2 adsorption at 77 K, mercury porosimetry, and density measurements. The surface analysis was performed by the Bohem method and pH of the point of zero charge (pHpzc). It has been found that the treatment of activated carbon with ozone combined with heat treatment enables one to control the acidic-basic character and strength of the carbon surface. Whereas the treatment with ozone yields acidic carbons, carbon dioxide and steam activations of the carbonized product and the heat treatment of the ozone-treated products result in basic carbons; the strength of a base which increases with the increasing heat treatment temperature. pHpzc ranges between 3.6 and 10.3.  相似文献   

3.
The use of activated carbon obtained from Euphorbia rigida for the removal of a basic textile dye, which is methylene blue, from aqueous solutions at various contact times, pHs and temperatures was investigated. The plant material was chemically modified with H2SO4. The surface area of chemically modified activated carbon was 741.2 m2 g−1. The surface characterization of both plant- and activated carbon was undertaken using FTIR spectroscopic technique. The adsorption process attains equilibrium within 60 min. The experimental data indicated that the adsorption isotherms are well described by the Langmuir equilibrium isotherm equation and the calculated adsorption capacity of activated carbon was 114.45 mg g−1 at 40° C. The adsorption kinetics of methylene blue obeys the pseudo-second-order kinetic model and also followed by the intraparticle diffusion model up to 60 min. The thermodynamic parameters such as ΔG°, ΔH° and ΔS° were calculated to estimate the nature of adsorption. The activation energy of the system was calculated as 55.51 kJ mol−1. According to these results, prepared activated carbon could be used as a low-cost adsorbent to compare with the commercial activated carbon for the removal textile dyes from textile wastewater processes.  相似文献   

4.
Adsorption and electrochemical studies were carried out on three activated carbon samples first oxidized, then heat-treated under vacuum (at 180, 500 and 900 °C). The investigations were performed with aqueous electrolyte (Na2HPO4 and H3PO4) solutions containing selected nonpolar organics (benzene and n-hexane). Adsorption measurements were carried out on solution with a wide range of organics concentration (up to saturation point). Cyclovoltammetric curves of powdered electrodes prepared from the activated carbon samples were recorded for the organics in saturated solutions. The electric double layer capacities of the anodic and cathodic parts were estimated, and the surface anodic and cathodic charge was calculated both in absence and presence of organics in the electrochemical systems. The relative surface charge (in relation to systems without organics) was found to decrease with a reduction in the concentration of surface oxygen-containing groups. Other physicochemical parameters characterizing the degree of surface oxidation (total oxygen concentration, primary water adsorption centres) were also taken into consideration. The correlation between adsorption capacity towards the nonpolar organic compounds (obtained from adsorption isotherms) and change of surface charge was analyzed.  相似文献   

5.
Waste apricot supplied by Malatya apricot plant (Turkey) was activated by using chemical activation method and K2CO3 was chosen for this purpose. Activation temperature was varied over the temperature range of 400-900 °C and N2 atmosphere was used with 10 °C/min heat rate. The maximum surface area (1214 m2/g) and micropore volume (0.355 cm3/g) were obtained at 900 °C, but activated carbon was predominantly microporous at 700 °C. The resulting activated carbons were used for removal of Ni(II) ions from aqueous solution and adsorption properties have been investigated under various conditions such as pH, activation temperature, adsorbent dosage and nickel concentration. Adsorption parameters were determined by using Langmuir model. Optimal condition was determined as; pH 5, 0.7 g/10 ml adsorbent dosage, 10 mg/l Ni(II) concentration and 60 min contact time. The results indicate that the effective uptake of Ni(II) ions was obtained by activating the carbon at 900 °C.  相似文献   

6.
Mesoporous SBA-15 was synthesized using rice husk ash (RHA) as the silica source and their defective Si-OH groups were grafted with tris(2-aminoethyl) amine (TREN) dendrimers generation through step-wise growth technique. The X-ray diffraction (XRD) and nitrogen adsorption/desorption results of parent SBA-15 obtained from RHA, suggests its resemblance with SBA-15 synthesized using conventional silica sources. Furthermore, the nitrogen adsorption/desorption results of SBA-15/TREN dendrimer generations (G1-G3) illustrates the growth of dendrimer inside the mesopores of SBA-15 and their CO2 adsorption capacity was determined at 25 °C. The maximum CO2 adsorption capacity of 5-6 and 7-8 wt% over second and third dendrimer generation was observed which is discernibly higher than the reported melamine and PAMAM dendrimers. The experimental CO2 adsorption capacity was found to be less than theoretically calculated CO2 adsorption capacity due to inter and intra molecular amidation as result of steric hindrance during the dendrimer growth. These SBA-15/TREN dendrimer generations also exhibit thermal stability up to 350 °C and CO2 adsorption capacity remains unaltered upon seven consecutive runs.  相似文献   

7.
The surface chemistry of pitch-based spherical activated carbon (PSAC) was modified by air oxidation to enhance its wettability as well as adsorption properties. Changes of PSAC after modification in texture, surface chemistry and wettability were studied by different techniques including N2 adsorption, X-ray photoelectron spectroscopy (XPS) and dynamic contact angle analyzer (DCA). Phenol adsorption characteristics in different solvents on PSAC were also investigated. When PSAC was modified under an atmosphere with 20 vol.% oxygen at 400 and 450 °C for 5 h, surface acidic groups increased from 0.11 to 1.22 and 1.60 meq/g, while basic groups decreased from 0.52 to 0.03 and 0.02 meq/g, respectively. After PSAC was modified, the increase of the oxygen-containing groups, especially carboxylic and phenolic ones, is responsible for the increasing of the surface acidity and the significant improvement of the wettability of PSAC. PSAC with a relatively high oxygen content provided a low adsorption capacity to phenol in aqueous solution, and the adsorption isotherms change from Langmuir class (L) to the S-shaped curve; while the solvent is changed into cyclohexane, all adsorption isotherms are type L, and the adsorption capacity to phenol increases with increasing oxygen-containing groups. Possible reasons, including the solvent effect, π-π dispersion and donor-acceptor interactions are discussed.  相似文献   

8.
Activated carbons were prepared from waste tyres by gasification with steam and carbon dioxide and their characteristics were investigated. A two-stage activation procedure (pyrolysis at 800 °C in N2 atmosphere, followed by steam or carbon dioxide activation) was used for the production of activated samples. The effect of the activation temperature (750-900 °C) and the activation time (1-3 h) on the surface characteristics of the prepared carbon was investigated. Carbons produced to different degrees of burn-off were characterized by means of their nitrogen adsorption isotherms at 77 K. In both sets of experiments, the mesopore, micropore volume, and BET surface area increased almost linearly with the degree of activation. For burn-off values lower than 53%, the steam activation produced carbons with a narrower and more extensive microporosity and higher BET and external surface area than the carbon dioxide activation. As the activation proceeds (burn-off > 53%), a strong development of the mesoporosity in the carbons was observed and the micropores size distribution revealed broader micropores, that is, a more heterogeneous distribution.  相似文献   

9.
Adsorption of pure CO2 on SBA-15 impregnated with branched polyethyleneimine (PEI) has been studied. Materials were prepared by impregnating the pore surface of SBA-15 mesoporous silica with different amounts of branched PEI (10, 30, 50 and 70 wt%). Textural properties, elemental analysis and low angle XRD measurements of the prepared samples showed a progressive pore filling of SBA-15 as PEI loading was increased. Pure CO2 adsorption isotherms on these modified SBA-15 materials were obtained at 45 °C, showing high adsorption efficiency for CO2 removal at 1 bar. Chemisorption of CO2 on amino sites of the modified SBA-15 seems to be the main adsorption mechanism. PEI content of impregnated SBA-15 influences the adsorption capacity of the material, being a relevant variable for CO2 removal by adsorption. Temperature effect on adsorption was also studied in the range 25-75 °C, showing that temperature strongly influences CO2 adsorption capacity. Adsorption capacity was also tested after regeneration of the PEI-impregnated SBA-15 materials. Our results show that these branched PEI-impregnated materials are very efficient even at low pressure and after several adsorption-regeneration cycles.  相似文献   

10.
Surface modification of activated carbons for CO2 capture   总被引:1,自引:0,他引:1  
The reduction of anthropogenic CO2 emissions to address the consequences of climate change is a matter of concern for all developed countries. In the short term, one of the most viable options for reducing carbon emissions is to capture and store CO2 at large stationary sources. Adsorption with solid sorbents is one of the most promising options. In this work, two series of materials were prepared from two commercial activated carbons, C and R, by heat treatment with gaseous ammonia at temperatures in the 200-800 °C range. The aim was to improve the selectivity and capacity of the sorbents to capture CO2, by introducing basic nitrogen-functionalities into the carbons. The sorbents were characterised in terms of texture and chemical composition. Their surface chemistry was studied through temperature-programmed desorption tests and X-ray photoelectron spectroscopy. The capture performance of the carbons was evaluated by using a thermogravimetric analyser to record mass uptakes by the samples when exposed to a CO2 atmosphere.  相似文献   

11.
The adsorption of CO2 on metal oxides at ambient temperature received less study largely due to the small adsorption amount. However, the adsorption is of interest in refreshing the atmosphere of isolated spaces. It was shown in the present work that PbO was sensitive to low concentration CO2 in the presence of water. An XPS examination indicated that PbO changed to PbCO3 after the adsorption of CO2; therefore, the adsorption is chemical in nature. In order to enlarge the CO2 capacity, PbO was dispersed on the surface of a silica gel with large surface area (710 m2/g). Both CO2 capacity and adsorption rate indicated that the optimal dispersion manner of PbO is the mono-molecular layer surface coverage. Breakthrough experiments showed that the prepared adsorbent could effectively capture low-concentration CO2 at ambient temperature and pressure yielding a CO2 capacity of 59.1 mg g−1. The saturated adsorbent was regenerated on heating at 380 °C and the CO2 capability was recovered.  相似文献   

12.
TiO2 photocatalysts deposited on activated carbon (TiO2/AC) were prepared by dip-hydrothermal method at 180 °C using peroxotitanate as a precursor, then calcinated at 300-800 °C. The samples were characterized by X-ray diffraction, scanning electron microscopy, Raman spectroscopy and the nitrogen absorption. Their photocatalytic activity was evaluated by degradation of methyl orange (MO). The results showed that TiO2 particles of anatase type were well deposited on the activated carbon surface. TiO2/AC calcinated at 600 °C exhibited the best photocatalytic performance. For the comparison, the same photocatalysis experiment was carried out for two mixtures of commercial TiO2 (Degussa P25) with AC and synthetic TiO2 with AC. It was found that the composite catalyst TiO2/AC was better than the two mixtures. Besides, different from fine powdered TiO2, the granular TiO2/AC photocatalysts could be easily separated from the bulk solution and reused; indeed, its photocatalytic ability was hardly decreased after a five-cycle for MO degradation. The kinetics of the MO degradation fitted well the Langmuir-Hinshelwood model.  相似文献   

13.
The adsorption of p-chlorophenol (PCP) from aqueous solution on activated carbons (ACs) with basic surface properties has been studied. The ACs were prepared by two methods. The first method was based on the modification of a commercial CWZ AC by high temperature treatment in an atmosphere of ammonia, nitrogen and hydrogen. The second approach comprised the carbonization followed by activation of N-enriched polymers and coal tar pitch using CO2 and steam as activation agent. The resultant ACs were characterized in terms of porous structure, elemental composition and surface chemistry (pHPZC, acid/base titration, XPS). The adsorption of PCP was carried out from an aqueous solution in static conditions. Equilibrium adsorption isotherm was of L2 type for polymer-based ACs, whereas L3-type isotherm was observed for CWZ ACs series. The Langmuir monolayer adsorption capacity was related to the porous structure and the amount of basic sites. A good correlation was found between the adsorption capacity and the volume of micropores with a width < 1.4 nm for polymer-based ACs. Higher nitrogen content, including that in basic form, did not correspond to the enhanced adsorption of PCP from aqueous solution. The competitive effect of water molecule adsorption on the PCP uptake is discussed.  相似文献   

14.
The heterogeneous adsorption and catalytic oxidation of benzene, toluene and o-xylene (BTX) over the spent platinum catalyst supported on activated carbon (Pt/AC) as well as the chemically treated spent catalysts were studied to understand their catalytic and adsorption activities. Sulfuric aqueous acid solution (0.1N, H2SO4) was used to regenerate the spent Pt/AC catalyst. The physico-chemical properties of the catalysts in the spent and chemically treated states were analyzed by using nitrogen adsorption-desorption isotherm and elemental analysis (EDX). The gravimetric adsorption and the light-off curve analysis were employed to study the BTX adsorption and oxidation on the spent catalyst and its modified Pt/AC catalysts. The experimental results indicate that the spent Pt/AC catalyst treated with the H2SO4 aqueous solution has a higher toluene adsorption and conversion ability than that of the spent Pt/AC catalyst. A further studies of H2SO4 treated Pt/AC catalyst on their catalytic and heterogeneous adsorption behaviours for BTX revealed that the activity of the H2SO4 treated Pt/AC catalyst follows the sequence of benzene > toluene > o-xylene. The adsorption equilibrium isotherms of BTX on the H2SO4 treated Pt/AC were measured at different temperatures ranging from 120 to 180 °C. To correlate the equilibrium data and evaluate their adsorption affinity for BTX, the two sites localized Langmuir (L2m) isotherm model was employed. The heterogeneous surface feature of the H2SO4 treated Pt/AC was described in detail with the information obtained from the results of isosteric enthalpy of adsorption and adsorption energy distributions. Furthermore, the activity of H2SO4 treated Pt/AC about BTX was found to be directly related to the Henry's constant, isosteric enthalpy of adsorption and adsorption energy distribution functions.  相似文献   

15.
Activated carbon fibers were prepared from rayon-based carbon fibers by two step activations with steam and KOH treatments. Hydrogen storage properties of the activated rayon-based carbon fibers with high specific surface area and micropore volume have been investigated. SEM, XRD and Brunauer-Emmett-Teller (BET) were used to characterize the samples. The adsorption performance and porous structure were investigated by nitrogen adsorption isotherm at 77 K on the base of BET and density functional theory (DFT). The BET specific surface area and micropore volume of the activated rayon-based carbon fibers were 3144 m2/g and 0.744 m3/g, respectively. Hydrogen storage properties of the samples were measured at 77 and 298 K with pressure-composition isotherm (PCT) measuring system based on the volumetric method. The capacities of hydrogen storage of the activated rayon-based carbon fibers were 7.01 and 1.46 wt% at 77 and 298 K at 4 MPa, respectively. Possible mechanisms for hydrogen storage in the activated rayon-based carbon fibers are discussed.  相似文献   

16.
A direct carbon fuel cell offers a high efficiency alternative to traditional coal fired electrical power plants. In this paper, the electrochemical performance of electrolyte supported button cells with Gd2O3-doped CeO2 (CGO) electrolyte is reported over the temperature range 600 to 800 °C with solid carbon as a fuel and He/CO2 as the purge gases in the fuel chamber. The electrochemical characterisation of the cells was carried out by the Galvanostatic Current Interruption (GCI) technique and measuring V-I and P-I curves. Power densities over 50 mWcm-2 have been demonstrated using carbon black as the fuel. Results indicate that at low temperatures around 600 °C, the direct electrochemical oxidation of carbon takes place. However, at higher temperatures (800 °C) both direct electrochemical oxidation and the reverse Boudouard reaction take place leading to some loss in fuel cell thermodynamic efficiency and reduced fuel utilisation due to the in-situ production of CO. In order to avoid reverse Boudouard reaction whilst maximising performance, an operating temperature of around 700 °C appears optimal. Further, the electrochemical performance of fuel cells has been compared for graphite and carbon black fuels. It was found that graphitic carbon fuel is electrochemically less reactive than relatively amorphous carbon black fuel in the DCFC when tested under similar conditions.  相似文献   

17.
In this paper, textural characterization of an activated carbon derived from carbonized coconut shell char obtained at carbonization temperature of 600 °C for 2 h by CO2 activation was investigated. The effects of activation temperature, activation time and flow rate of CO2 on the BET surface area, total volume, micropore volume and yield of activated carbons prepared were evaluated systematically. The results showed that: (i) enhancing activation temperature was favorable to the formation of pores, widening of pores and an increase in mesopores; (ii) increasing activation time was favorable to the formation of micropores and mesopores, and longer activation time would result in collapsing of pores; (iii) increasing flow rate of CO2 was favorable to the reactions of all active sites and formation of pores, further increasing flow rate of CO2 would lead carbon to burn out and was unfavorable to the formation of pores. The degree of surface roughness of activated carbon prepared was measured by the fractal dimension which was calculated by FHH (Frenkel-Halsey-Hill) theory. The fractal dimensions of activated carbons prepared were greater than 2.6, indicating the activated carbon samples prepared had very irregular structures, and agreed well with those of average micropore size.  相似文献   

18.
Adsorption of carbon dioxide on a faujasite-type H-Y zeolite (Si:Al = 2.6:1) was studied by variable-temperature (200-290 K range) infrared spectroscopy. Adsorbed CO2 molecules interact with the Brønsted acid Si(OH)Al groups located inside the zeolite supercage, bringing about a characteristic bathochromic shift of the O-H stretching mode from 3645 cm−1 (free OH group) to 3540 cm−1 (hydrogen-bonded CO2 adsorption complex). Simultaneously, the asymmetric (ν3) mode of adsorbed CO2 is observed at 2353 cm−1. From the observed variation of the integrated intensity of the 3645 and 2353 cm−1 IR absorption bands upon changing temperature, corresponding values of standard adsorption enthalpy and entropy were found to be ΔH° = −28.5(±1) kJ mol−1 and ΔS° = −129(±10) J mol−1 K−1. Comparison with the reported values of ΔH° for CO2 adsorption on other zeolites is briefly discussed.  相似文献   

19.
Cherry stones (CS), an industrial product generated abundantly in the Valle del Jerte (Cáceres province, Spain), were used as precursor in the preparation of activated carbon by chemical activation with ZnCl2. The influence of process variables such as the carbonisation temperature and the ZnCl2:CS ratio (impregnation ratio) on textural and chemical-surface properties of the products obtained was studied. Such products were characterised texturally by adsorption of N2 at −196 °C, mercury porosimetry and density measurements. Information on the surface functional groups and structures of the carbons was provided by FT-IR spectroscopy. Activated carbon with a high development of surface area and porosity is prepared. When using the 4:1 impregnation ratio, the specific surface area (BET) of the resultant carbon is as high as 1971 m2 g−1. The effect of the increase in the impregnation ratio on the porous structure of activated carbon is stronger than that of the rise in the carbonisation temperature, whereas the opposite applies to the effect on the surface functional groups and structures.  相似文献   

20.
《Molecular physics》2012,110(11-12):1153-1160
In this study, the adsorption capacity of pure and activated carbon with regard to carbon monoxide (CO), carbon dioxide (CO2) and methane (CH4) gases at 298?K and pressure from 0.01 up to 2.0?MPa has been investigated computationally. Computational work refers to Monte Carlo (MC) simulation of each adsorbed gas on a graphite model with varying density of activation sites. The Grand Canonical Monte Carlo (GCMC) simulation technique was employed to obtain the uptake of each adsorbed gas by considering a graphite model of parallel sheets activated by carboxyl and hydroxyl groups, as observed experimentally. The simulation adsorption data for these gases within the examined carbon pore material are presented and discussed in terms of the adsorbate fluid molecular characteristics and corresponding interactions between adsorbate species and adsorbent material. We found that the simulated adsorption uptake of the examined graphite model under these conditions with regard to the aforementioned fluids increases in the order CO?<?CH4?<?CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号