首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thin films of doped semiconducting barium-strontium titanate (Ba,Sr)TiO3 are prepared by pulsed laser ablation. It is shown that the crystal structure, morphology, and electrical properties of (Ba,Sr)TiO3 thin films are determined primarily by the actual ablation conditions. The ablation regimes of deposition permitting preparation of uniform polycrystalline thin films with a composition close to that of the target and with grain sizes larger than 0.1 μm are established. These samples have a positive temperature coefficient of resistance in the phase transition region. The change in the resistivity can be as much as 100%.  相似文献   

2.
Na0.5Bi0.5TiO3-BaTiO3 (NBT-BT) thin films grown by pulsed laser deposition have been investigated by X-ray diffraction, scanning electron microscopy, and dielectric spectroscopy in order to clarify the role of substrate temperature on crystalline structure, grain morphology, and dielectric properties. We have shown that the structural and dielectric properties of NBT-BT thin films with composition at morphotropic phase boundary (6% BT) critically depend on the substrate temperature: small variations of this parameter induce structural changes, shifting the morphotropic phase boundary toward tetragonal or rhombohedral side. Higher deposition temperature (1000 K) favor the formation of rhombohedral phase, films deposited at 923 K and 973 K have tetragonal symmetry at room temperature. Grains morphology depends also on the deposition temperature. Atomic force micrographs show grains with square or rectangular shape in a compact structure for films grown at lower temperatures, while grains with triangular shape in a porous structure are observed for films grown at 1000 K. Dielectric spectroscopy measurements evidenced the phase transition between ferroelectric and antiferroelectric phase at 370 K. Films grown at 1000 K shown low electrical resistivity due to their porous structure. High dielectric constant values (about 800 at room temperature and 2700 at 570 K) have been obtained for films grown at temperatures up to 973 K.  相似文献   

3.
Single-phase Ba(Mg1/3Ta2/3)O3 thin films were prepared by radiofrequency plasma beam assisted pulsed laser deposition (RF-PLD) starting from a bulk ceramic target synthesized by solid state reaction. Atomic force microscopy, X-ray diffraction and spectroscopic ellipsometry were used for morphological, structural and optical characterization of the BMT thin films. The X-ray diffraction spectra show that the films exhibit a polycrystalline cubic structure. From spectroscopic ellipsometry analysis, the refractive index varies with the thin films deposition parameters. By using the transmission spectra and assuming a direct band to band transition a band gap value of ≈4.72 eV has been obtained.  相似文献   

4.
Lead-free ferroelectric K0.5Na0.5NbO3 (KNN) thin films have been prepared on Pt/TiO2/SiO2/Si substrates by pulsed laser deposition process. The structures, crystal orientations and electrical properties of thin films have been investigated as a function of deposition temperature from 680 °C to 760 °C. It is found that the deposition temperature plays an important role in the structures, crystal orientations and electrical properties of thin films. The crystallization of thin films improves with increasing deposition temperature. The thin film deposited at 760 °C exhibits strong (0 0 1) preferential orientation, large dielectric constant of 930 and the remnant polarization of 8.54 μC/cm2.  相似文献   

5.
N-doped TiO2 thin films have been deposited on unheated glass substrates by an inductively coupled plasma (ICP) assisted direct current (dc) reactive magnetron sputtering. All films were produced in the metallic mode of sputtering in order to achieve a high deposition rate. The structures and properties of the N-doped TiO2 films were studied by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, field emission scanning electron microscopy and UV–Vis spectrophotometer. Experimental results show that we can obtain well crystallized N-doped anatase phase TiO2 thin films at low deposition temperature and at high deposition rate by using the ICP assisted dc reactive magnetron sputtering process. The doping of nitrogen into TiO2 lattices leads to a smooth shift of the absorption band toward visible light regions.  相似文献   

6.
We report the structural and transport properties of NdNiO3 thin films prepared via pulsed laser deposition over various substrates. The films were well textured and c-axis oriented with good crystalline properties. The electrical resistivity of the films undergoes a metal-insulator transition, depending on the deposition process. Well-defined first order metal-insulator phase transition (TMI) was observed in the best quality films without high pressure processing. Various growth conditions such as substrate temperature, oxygen pressure and thickness were varied to see their influence on TMI. Deposition temperature was found to have a great impact on the electrical and structural properties of these films. Further the films deposited on LaAlO3 substrate were found to be highly oriented with uniform grain size as observed from X-ray diffraction and atomic force microscopy, whereas those on Si substrate were polycrystalline, dense and randomly oriented.  相似文献   

7.
Bi0.5(Na0.7K0.2Li0.1)0.5TiO3 (BNKLT) thin films were prepared on Pt/Ti/SiO2/Si substrates by pulsed laser deposition (PLD) technique. The films prepared were examined by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The effects of the processing parameters, such as oxygen pressure, substrate temperature and laser power, on the crystal structure, surface morphology, roughness and deposition rates of the thin films were investigated. It was found that the substrate temperature of 600 °C and oxygen pressure of 30 Pa are the optimized technical parameters for the growth of textured film, and all the thin films prepared have granular structure, homogeneous grain size and smooth surfaces.  相似文献   

8.
LaF3 thin films were prepared by electron beam evaporation with different temperatures and deposition rates. Microstructure properties including crystalline structure and surface roughness were investigated by X-ray diffraction (XRD) and optical profilograph. X-ray photoelectron spectroscopy (XPS) was employed to study the chemical composition of the films. Optical properties (transmittance and refractive index) and laser induce damage threshold (LIDT) at 355 nm of the films were also characterized. The effects of deposition rate and substrate temperature on microstructure, optical properties and LIDT of LaF3 thin films were discussed, respectively.  相似文献   

9.
Ba0.6Sr0.4TiO3 (BST) bulk ceramic synthesized by solid state reaction was used as target for thin films grown by pulsed laser deposition (PLD) and radiofrequency beam assisted PLD (RF-PLD). The X-ray diffraction patterns indicate that the films exhibit a polycrystalline cubic structure with a distorted unit cell. Scanning Electron Microscopy investigations showed a columnar microstructure with size of spherical grains up to 150 nm. The capacitance–voltage (C–V) characteristics of the BST films were performed by applying a DC voltage up to 5 V. A value of 280 for dielectric constant and 12.5% electrical tunability of the BST capacitor have been measured at room temperature.  相似文献   

10.
In this work we report on the properties of the ablation plume and the characteristics of the films produced by ultra-fast pulsed laser deposition (PLD) of TiO2 in vacuum. Ablation was induced by using pulses with a duration of ≈300 fs at 527 nm. We discuss both the composition and the expansion dynamics of the TiO2 plasma plume, measured by exploiting time- and space-resolved emission spectroscopy and gated imaging. The properties of the TiO2 nanoparticles and nanoparticle-assembled films were characterized using different techniques, i.e. environmental scanning electron microscopy (ESEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). It is suggested that most of the material decomposes in the form of nanoparticles.  相似文献   

11.
This paper presents the results of surface characterization of TiO2 thin films deposited on different substrates by the use of high-energy reactive magnetron sputtering. Structural investigations carried out by X-ray diffraction (XRD) and atomic force microscopy (AFM) have shown a strong influence of both the substrate type, and its placement in the deposition chamber (relative to the sputtering target), on the structural properties of the films. In all cases, there is evidence for pseudoepitaxial growth. XRD examination showed existence of TiO2-rutile phase with preferred (1 1 0) orientation and AFM measurements revealed nanocrystalline structure directly after deposition. X-ray photoelectron spectroscopy analysis showed that the TiO2 films have stoichiometric composition.  相似文献   

12.
The MAPLE technique has been used for the deposition of nanostructured titania (TiO2) nanoparticles thin films to be used for gas sensors applications. An aqueous solution of TiO2 nanoparticles, synthesised by a novel chemical route, was frozen at liquid nitrogen temperature and irradiated with a pulsed ArF excimer laser in a vacuum chamber. A uniform distribution of TiO2 nanoparticles with an average size of about 10 nm was deposited on Si and interdigitated Al2O3 substrates as demonstrated by high resolution scanning electron microscopy-field emission gun inspection (SEM-FEG). Energy dispersive X-ray (EDX) analysis revealed the presence of only the titanium and oxygen signals and FTIR (Fourier transform infra-red) revealed the TiO2 characteristic composition and bond. A comparison with a spin coated thin film obtained from the same solution of TiO2 nanoparticles is reported. The sensing properties of the films deposited on interdigitated substrates were investigated, too.  相似文献   

13.
This study investigated the optical and electrical properties of Nb-doped TiO2 thin films prepared by pulsed laser deposition (PLD). The PLD conditions were optimized to fabricate Nb-doped TiO2 thin films with an improved electrical conductivity and crystalline structure. XRD analyses revealed that the deposition at room temperature in 0.92 Pa O2 was suitable to produce anatase-type TiO2. A Nb-doped TiO2 thin film attained a resistivity as low as 6.7 × 10−4 Ω cm after annealing at 350 °C in vacuum (<10−5 Pa), thereby maintaining the transmittance as high as 60% in the UV-vis region.  相似文献   

14.
The microstructure and properties of barium strontium titanate (BST) thin films grown by an in situ ultraviolet-assisted (UV-assisted) pulsed laser deposition (UVPLD) technique are reported in this paper. In comparison with BST films grown by conventional pulsed laser deposition (PLD) under similar conditions, but without UV illumination, the UVPLD-grown films exhibited improved structural, electrical, and optical properties. X-ray photoelectron spectroscopy showed that when exposed to atmosphere, Ba atoms from the outermost layers formed a thin layer of barium carbonate, which negatively affects the film electrical characteristics. UVPLD-grown films exhibited a smaller amount of Ba atoms within the carbonate layer, resulting in better electrical characteristics. The dielectric constant of 40-nm-thick films deposited at 650 °C by UVPLD and PLD were determined to be 281 and 172, respectively. The leakage current density of the UVPLD-grown films was in the mid-10-8 A/cm2 range, a factor of 2 lower than that obtained from PLD-grown films.  相似文献   

15.
《Current Applied Physics》2020,20(9):1031-1035
We report the deposition of epitaxial SrHfO3 thin films on a SrTiO3 (001) substrate in different substrate temperatures by using a pulsed laser deposition (PLD) method. We carried out X-ray diffraction (XRD), X-ray reflectivity (XRR), reciprocal space mapping (RSM), atomic force microscopy (AFM), resistivity, and Hall measurements to examine the crystallinity, morphology and electrical properties of these films. All films showed smooth and uniform morphology with small root mean square (RMS) roughness. While the SrHfO3 sample grown at 750 °C is metallic, the films deposited at 600 °C, 650 °C, and 700 °C show an upturn at low temperatures. The temperature dependence of the metallic parts was analyzed based on the parallel resistor model that includes resistivity saturation. On the other hand, the low-temperature upturn was found to be well described by a weak localization mechanism. We also observed the possible emergence of non-Fermi liquid behavior when the upturn disappeared. All SrHfO3 films have p-type charge carriers.  相似文献   

16.
CaxCo4Sb12 skutterudite thin films have been synthesized by pulsed laser deposition from a Nd:YAG laser working at 532 or 355 nm. The influence of deposition temperature, laser fluence and working atmosphere on the structure and morphology of the films has been studied. The characterization has been carried out by X-ray diffraction, atomic force microscopy and scanning electron microscopy. Laser wavelength proved to be the most significant parameter to produce the skutterudite phase. PACS 81.15.Fg; 68.55.Jk; 81.05.Bx  相似文献   

17.
In this paper, we report an alternate technique for the deposition of nanostructured TiO2 thin films using the electrohydrodynamic atomization (EHDA) technique using polyvinylpyrrolidone (PVP) as a stabilizer. The required parameters for achieving uniform TiO2 films using EHDA are also discussed in detail. X-ray diffraction results confirm that the TiO2 films were oriented in the anatase phase. Scanning electron microscope studies revealed the uniform deposition of the TiO2. The purity of the films is characterized by using Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS), confirming the presence of Ti–O bonding in the films without any organic residue. The optical properties of the TiO2 films were measured by UV-visible spectroscopy, which shows that the transparency of the films is nearly 85% in the visible region. The current–voltage (IV) curve of the TiO2 thin films shows a nearly linear behavior with 45 mΩ?cm of electrical resistivity. These results suggest that TiO2 thin films deposited via the EHDA method possess promising applications in optoelectronic devices.  相似文献   

18.
《Current Applied Physics》2010,10(3):821-824
We have studied the effect of thickness on the structural, magnetic and electrical properties of La0.7Ca0.3MnO3 thin films prepared by pulsed laser deposition method using X-ray diffraction, electrical transport, magneto-transport and dc magnetization. X-ray diffraction pattern reflects that all films have c-axis epitaxial growth on LaAlO3 substrate. The decrease in out-of-plane cell parameter specifies a progressive relaxation of in the plane compressive strain as the film thickness is increases. From the dc magnetization measurements, it is observed that ferromagnetic to paramagnetic transition temperature increases with increase in the film thickness. Magneto-resistance and temperature coefficient of resistance increases with film thickness and have maximum value near its metal to insulator transition temperature.  相似文献   

19.
The potential for extending the optical absorption range of TiO2 by doping with nonmetallic elements was examined in nitrogen-containing TiO2 thin films. Thin films of TiO2-xNx were synthesized on glass and silicon substrates by ion-beam-assisted deposition to obtain a wide range of nitrogen concentrations. The compositions of the films were determined by Rutherford backscattering spectrometry and X-ray photoelectron spectroscopy. The structures of the films were analyzed by X-ray diffraction, transmission electron microscopy, and atomic force microscopy. The optical properties of the films were measured by UV-Vis spectroscopy and ellipsometry. A characteristic decreasing trend in band-gap values of the films was observed within a certain range of increasing dopant concentrations. As the nitrogen concentration increased, the structure of the films evolved from a well-defined anatase to deformed anatase. The reduced band gaps are associated with the N 2p orbital in the TiO2-xNx films. PACS 78.66.-w; 78.20.Ci  相似文献   

20.
《Current Applied Physics》2018,18(6):737-743
Electron-hole separation and a narrow band-gap are essential steps to obtain efficient photocatalysis, towards which the use of co-catalysts or co-doped-TiO2 photocatalysts has become a widely used strategy. In this article, the combination of MoS2 and co-doping of V, N is the goal to achieve high performance photocatalysts. We synthesized MoS2/V, N co-doped TiO2 heterostructure thin film by sol-gel and chemical bath deposition methods. Herein, we investigated the influence of deposition time of MoS2 layer on visible-photocatalytic activity of the obtained samples. The thin films were characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and UV–vis spectroscopy techniques. Visible-photocatalytic activity of these samples were evaluated on the removal of methylene blue (MB) under visible light irradiation. The results show that the aforementioned heterostructure thin films have better photocatalytic activities than those of TiO2, MoS2 and V, N co-doped TiO2 counterparts in visible light region. The mechanism for increasing visible-photocatalytic property of the heterostructure thin films is discussed in detail. We find that MoS2/V, N co-doped TiO2 heterostructure thin film at MoS2 deposition time of 45-min shows the highest photocatalytic performance in the visible light region with MB photodegradation rate about 99% for 150 min and the degradation rate constant is 2.06 times higher than that of V and N co-doped TiO2 counterpart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号