首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The initial stage of the thermal nitridation on Si (1 0 0)-2 × 1 surface with the low-energy nitrogen ion (200 eV) implantation was studied by photoemission spectroscopy (PES). The formation of nitride was shown the different characteristics depending on the annealing temperature. The disordered surface at room temperature was changed to 2 × 1 periodicity with the low-energy electron diffraction (LEED) as increasing the nitridation temperature. By decomposition of Si 2p spectrum, we can identify the three subnitrides (Si1+, Si2+, and Si3+). By changing the take-off angle of the Si 2p, we can increase surface sensitivity and estimate that Si1+, Si2+ and Si3+ are the interface states.  相似文献   

2.
A. Bahari  Z.S. Li 《Surface science》2006,600(15):2966-2971
The growth of ultrathin films of Si3N4 directly on Si surfaces is studied with valence band photoemission. The information from these studies about the growth mechanism and the changes of the electronic structure is enhanced by the use of various photon energies with synchrotron radiation. The silicon nitride films are grown isothermally on the Si(1 0 0) and Si(1 1 1) surfaces by reactions with atomic N. The atomic nitrogen is produced by using a remote, microwave excited nitrogen plasma. The growth under these conditions was earlier shown to be self limiting. The details in the valence band spectra are identified and resolved with numerical methods, and followed systematically during the growth. Thus the identification of Si surface states, Si-nitride interface states and bulk nitride states becomes possible. The previously obtained separation between amorphous and crystalline growth occurring around 500 °C is further supported in the present studies.  相似文献   

3.
In the search for silicon technology compatible substrate for III-nitride epitaxy, we present a proof-of-concept for forming epitaxial SiC layer on Si(1 1 1). A C/Si interface formed by ion sputtering is exposed to 100-1500 eV Ar+ ions, inducing a chemical reaction to form SiC, as observed by core-level X-ray photoelectron spectroscopy (XPS). Angle dependent XPS studies shows forward scattering feature that manifest the epitaxial SiC layer formation, while the valence band depicts the metal to insulator phase change.  相似文献   

4.
SiH4 and GeH4 dissociative adsorptions on a buckled SiGe(1 0 0)-2 × 1 surface have been analyzed using density functional theory (DFT) at the B3LYP level. The Ge alloying in the Si(1 0 0)-2 × 1 surface affects the dimer buckling and its surface reactivity. Systematic Ge influences on the reaction energetics are found in SiH4 and GeH4 reactions with four dimers of Si-Si, Ge-Si, Ge-Ge, and Si-Ge (∗ denotes the protruded atom). On a half H-covered surface, the energy barriers for silane and germane adsorption are higher than those on the pristine surface. The energy barrier for silane adsorption is higher than the corresponding barrier for germane adsorption. Rate constants are also calculated using the transition-state theory. We conclude that the SiGe surface reactivity in adsorption reaction depends on the Ge presence in dimer form. If the surface Ge is present in form of Ge-Ge, the surface reactivity decreases as the Ge-Ge content increases. If the surface Ge prefers to be in form of Ge-Si at low Ge contents, the surface reactivity increases first, then decreases at high Ge surface contents when Ge-Ge prevails. The calculated rate constant ratio of GeH4 adsorption on Si-Si over Ge-Ge at 650 °C is 2.1, which agrees with the experimental ratio of GeH4 adsorption probability on Si(1 0 0) over Si(1 0 0) covered by one monolayer Ge. The experimental ratio is 1.7 measured through supersonic molecular beam techniques. This consistency between calculation and experimental results supports that one monolayer of Ge on Si(1 0 0) exists in form of Ge-Ge dimer.  相似文献   

5.
The effect of residual oxygen impurity on ionization processes of Si+ and Si2+ has been studied quantitatively. In this study, ion sputtering experiments were carried out for a Si(1 1 1)-7 × 7 surface, irradiated with 9-11 keV Ar0 and Kr0 beam. Even if the oxygen concentration is less than the detection limit of Auger electron spectrometry, SiO+ and SiO2+ ions have been appreciably observed. Moreover, as the SiO+ and SiO2+ yields increases, the Si+ yield is slightly enhanced, whereas the Si2+ yield is significantly reduced. From the incidence angle dependence of secondary ion yields, it is confirmed that Si+* (Si+ with a 2p hole) created in the shallow region from the surface exclusively contributes to Si2+ formation. By assuming that the SiO+ and SiO2+ yields are proportional to the residual oxygen concentration, these observations are reasonably explained: The increase of Si+ with the increase of residual oxygen is caused by a similar effect commonly observed for oxidized surfaces. The decrease of Si2+ yield can be explained by the inter-atomic Auger transition between the residual oxygen impurity and Si+*, which efficiently interferes the Si2+ formation process.  相似文献   

6.
In this study, the interaction of CF with the clean Si(1 0 0)-(2 × 1) surface at normal incidence and room temperature was investigated using molecular dynamics simulation. Incident energies of 2, 12 and 50 eV were simulated. C atoms, arising from dissociation, preferentially react with Si to form Si-C bonds. A SixCyFz interfacial layer is formed, but no etching is observed. The interfacial layer thickness increases with increasing incident energy, mainly through enhanced penetration of the silicon lattice. Silicon carbide and fluorosilyl species are formed at 50 eV, which is in good agreement with available experimental data. The level of agreement between the simulated and experimental results is discussed.  相似文献   

7.
Amorphous silicon nitride (a-SiNx) films were deposited using plasma-enhanced chemical-vapor deposition (PECVD) and subsequently, thermal annealing processes were performed at 700-1000 °C in the ultra-high vacuum (UHV) condition. A strong photoluminescence (PL) peak induced by luminescent defect centers was observed at 710 nm for the as-deposited sample. When the sample was annealed at 700-1000 °C, the PL peak intensity became about 3-12 times stronger with no shift of the PL peak. To investigate the origin of the change in PL peak intensity after the thermal annealing, Si 2p and N 1s core-level spectra were systematically analyzed by high-resolution photoemission spectroscopy (HRPES) using synchrotron radiation. In particular, N 1s spectra were decomposed with three characteristic nitrogen-bonding states. It is revealed that the nitrogen bonding state with N-Si and NSi2 configurations (denoted as N3) contributes mainly to the change in PL peak intensity. We note that luminescent nitrogen related defect centers such as N4+ and N2° are localized in the state N3. Detailed analysis of the experimental results shows that the state N3 is located in the interface bounded by the region of the nano-sized stoichiometric silicon nitride Si3N4 (denoted as N1) and is considerably influenced by the thermal annealing, which is an appropriate process to cause strong photoluminescence of the related samples as mentioned above.  相似文献   

8.
To model the adsorption of Au+ cation in aqueous solution on the semiconductor surface, the interactions of Au+ and hydrated Au+ cations with clean Si(1 1 1) surface were investigated by using hybrid density functional theory (B3LYP) and Møller-Plesset second-order perturbation (MP2) methods. Si(1 1 1) surface was described with Si7H11, Si11H17 and Si22H21 clusters. The effect of the basis set superposition error (BSSE) was taken into account by applying the counterpoise correction. The calculated results indicated that the binding energies between hydrated Au+ cations and clean Si(1 1 1) surface are large, suggesting a strong interaction between hydrated Au+ cations and the semiconductor surface. The bonding nature of the chemical adsorption of Au+ to Si surface can be classified as partial covalent as well as ionic bonding. As the number of water molecules increases, the water molecules form hydrogen bond network with one another and only one water molecule binds directly to the Au+ cation. The Au+ cation in aqueous solution will safely attach to the clean Si(1 1 1) surface.  相似文献   

9.
From ab initio studies employing the pseudopotential method and the density functional scheme, we report on progressive changes in geometry, electronic states, and atomic orbitals on Si(0 0 1) by adsorption of different amounts of Bi coverage. For the 1/4 ML coverage, uncovered Si dimers retain the characteristic asymmetric (tilted) geometry of the clean Si(0 0 1) surface and the Si dimers underneath the Bi dimer have become symmetric (untilted) and elongated. For this geometry, occupied as well as unoccupied surface states are found to lie in the silicon band gap, both sets originating mainly from the uncovered and tilted silicon dimers. For the 1/2 ML coverage, there are still both occupied and unoccupied surface states in the band gap. The highest occupied state originates from an elaborate mixture of the pz orbital at the Si and Bi dimer atoms, and the lowest unoccupied state has a ppσ* antibonding character derived from the Bi dimer atoms. For 1 ML coverage, there are no surface states in the fundamental bulk band gap. The highest occupied and the lowest unoccupied states, lying close to band edges, show a linear combination of the pz orbitals and ppσ* antibonding orbital characters, respectively, derived from the Bi dimer atoms.  相似文献   

10.
A study of silicon plasma generated in vacuum by 532 nm Nd:YAG laser at intensities of about 5 × 109 W/cm2 from dielectric targets containing a relatively huge quantity of hydrogen was presented.Time-of-flight technique was employed to measure the particles’ energy and the relative yield with respect to other ion species. Plasma-accelerated ions show Coulomb-Boltzmann-shifted distributions depending on their charge state.Mass quadrupole spectrometry allowed the estimation of the relative hydrogen amount inside the different samples considered: silicon (Si), silicon nitride (Si3N4) and hydrogenated annealed silicon (Si(H)) as a function of the ablation depth and irradiation time.Depth profiles of the laser craters permit to calculate the ablation yield at the used laser fluence. The plasma temperature and density was evaluated by the experimental data. A special regard is given to the protons’ generation process occurring inside the plasma, due to the possible influence of the hydrogen excess on the treated samples in comparison to the not-hydrogenated silicon ones.  相似文献   

11.
The abstraction of chemisorbed hydrogen on Si(1 0 0) and Si(1 1 1) induced by atomic hydrogen has been investigated by studying with a rotatable mass spectrometer the angle-resolved molecular hydrogen desorption from a Si surface exposed to a chopped beam of atomic hydrogen. The angular distributions of desorbing molecules can be fitted independent of the surface temperature and the surface reconstruction by a cosnθ function with n < 1 for Si(1 0 0) and Si(1 1 1). These results are interpreted by non-activated pathways involving site-specific hot-atom abstraction on two adjacent silicon atoms with one having a dangling bond. Possible mechanisms according to the surface reconstructions are discussed.  相似文献   

12.
Using scanning tunneling microscopy (STM) and time of flight secondary ion mass spectrometry (TOF/SIMS), we observed radiation effects on a Si(1 1 1)-(7 × 7) surface in the collision of a single highly charged ion (HCI) with a charge state q up to q = 50. The STM observation with atomic resolution revealed that a nanometer sized crater-like structure was created by a single HCI impact, where the size increased rapidly with q. The secondary ion yields also increased with q in which multiply charged Si ions (Sin+) were clearly observed in higher q HCI-collisions. The sputtering mechanism is briefly discussed, based on the so-called Coulomb explosion model.  相似文献   

13.
Hai Gou Huang 《Surface science》2007,601(5):1184-1192
The adsorption configurations of pyrimidine and triazine on Si(1 1 1)-7 × 7 were investigated using high-resolution electron energy loss spectroscopy (HREELS) X-ray photoelectron spectroscopy and density functional theory calculations. The HREELS spectra of chemisorbed monolayer show the coexistence of the C(sp2)-H and C (sp3)-H stretching modes together with the observation of the unconjugated CN(C) vibrational feature suggesting that the carbon atom and its para-nitrogen atom of pyrimidine and triazine directly participate in binding with the surface to form Si-C and Si-N σ-linkages. The core levels of the C-atom and its opposite nitrogen atom directly binding with Si-atoms experience a down-shifting by 1.8-1.9 and 1.4-1.6 eV, respectively. These experimental findings are consistent with the density functional theory calculations indicating that the carbon atom and its para-nitrogen atom favorably link with the adjacent adatom and rest atom pair to form C-Si and N-Si linkages.  相似文献   

14.
Formation mechanism of Si(1 0 0) surface morphology in alkaline fluoride solutions was investigated both theoretically and experimentally. By analysis of Raman spectra of silicon wafer surfaces and three kinds of etching solutions (NaOH, NaOH/NH4F, and NaOH/NH4F/Na2CO3) with and without addition of Na2SiO3·9H2O, no Si-F bond is formed, F and CO32− ions accelerate the condensation of Si-OH groups. Based on experimental results, it is proposed that bare silicon and silicon oxide coexist at the wafer surface during etching process and silicon oxide of different structure, size, and site at the surface manufacture different surface morphology in alkaline fluoride solution.  相似文献   

15.
The adsorption of S2 on the Si(1 1 1)-(7 × 7) surface and the interaction of copper and sulfur on this sulfur-terminated Si(1 1 1) surface have been studied using synchrotron irradiation photoemission spectroscopy and scanning tunneling microscopy. The adsorption of S2 at room temperature results in the passivation of silicon dangling bonds of Si(1 1 1)-(7 × 7) surface. Excessive sulfur forms Sn species on the surface. Copper atoms deposited at room temperature directly interact with S-adatoms through the formations of Cu-S bonds. Upon annealing the sample at 300 °C, CuSx nanocrystals were produced on the sulfur-terminated Si(1 1 1) surface.  相似文献   

16.
A tin layer 0.8 nm thick was deposited onto the CeO2(1 1 1) surface by molecular beam deposition at a temperature of 520 K. The interaction of tin with cerium oxide (ceria) was investigated by X-ray photoelectron spectroscopy (XPS), ultra-violet photoelectron spectroscopy (UPS) and resonant photoelectron spectroscopy (RPES). The strong tin-ceria interaction led to the formation of a homogeneous bulk Ce-Sn-O mixed oxide system. The bulk compound formation is accompanied by partial Ce4+ → Ce3+ reduction, observed as a giant 4f resonance enhancement of the Ce3+ species. CeO2 and SnO2 oxides were formed after oxygen treatment at 520 K. The study proved the existence of strong Ce-Sn interaction and charge transfer from Sn to the Ce-O complex that lead to a weakening of the cerium-oxygen bond, and consequently, to the formation of oxygen deficient active sites on the ceria surface. This behavior can be a key for understanding the higher catalytic activity of the SnOx/CeOx mixed oxide catalysts as compared with the individual pure oxides.  相似文献   

17.
D.M. Riffe  N.D. Shinn  K.J. Kim 《Surface science》2009,603(24):3431-3033
We have measured W and Pt 4f7/2 core-level photoemission spectra from interfaces formed by ultrathin Pt layers on W(1 1 0), completing our core-level measurements of W(1 1 0)-based bimetallic interfaces involving the group-10 metals Ni, Pd, and Pt. With increasing Pt coverage the sequence of W spectra can be described using three interfacial core-level peaks with binding-energy (BE) shifts (compared to the bulk) of −0.220 ± 0.015, −0.060 ± 0.015, and +0.110 ± 0.010 eV. We assign these features to 1D, 2D pseudomorphic (ps), and 2D closed-packed (cp) Pt phases, respectively. For ∼1 ps ML the Pt 4f7/2 BE is 71.40 ± 0.02 eV, a shift of +0.46 ± 0.09 eV with respect to the BE of bulk Pt metal. The W 4f7/2 core-level shifts induced by all three adsorbates are semiquantitatively described by the Born-Haber-cycle based partial-shift model of Nilsson et al. [39]. As with Ni/W(1 1 0), the difference in W 4f7/2 binding energies between ps and cp Pt phases has a large structural contribution. The Pt 4f lineshape is consistent with a small density of states at the Fermi level, reflective of the Pt monolayer having noble-metal-like electronic structure.  相似文献   

18.
Molecular electroactive monolayers have been produced from vinylferrocene (VFC) via light-assisted surface anchoring to H-terminated n- and p-Si(1 0 0) wafers prepared via wet chemistry, in a controlled atmosphere. The resulting Si-C bound hybrids have been characterized by means of XPS and AFM. Their performance as semiconductor functionalized electrodes and their surface composition have been followed by combining electrochemical and XPS measurements on the same samples, before and after use in an electrochemical cell. White-light photoactivated anchoring at short (1 h) exposure times has resulted in a mild route, with a very limited impact on the initial quality of the silicon substrate. In fact, the functionalized Si surface results negligibly oxidized, and the C/Fe atomic ratio is close to the value expected for the pure molecular species. The VFC/Si hybrids can be described as (η5-C5H5)Fe2+(η5-C5H4)-CH2-CH2-Si species, on the basis of XPS results. Electrochemical methods have been applied in order to investigate the role played by a robust, covalent Si-C anchoring mode towards substrate-molecule electronic communication, a crucial issue for a perspective development of molecular electronics devices. The response found from cyclic voltammograms for p-Si(1 0 0) functionalized electrodes, run in the dark and under illumination, has shown that the electron transfer is not limited by the number of charge carriers, confirming the occurrence of electron transfer via the Si valence band. The hybrids have shown a noticeable electrochemical stability and reversibility under cyclic voltammetry (cv), and the trend in peak current intensity vs. the scan rate was linear. The molecule-Si bond is preserved even after thousands of voltammetric cycles, although the surface coverage, evaluated from cv and XPS, decreases in the same sequence. An increasingly larger surface concentration of Fe3+ at the expenses of Fe2+ redox centers has been found at increasing number of cv’s, experimentally associated with the growth of silicon oxide. Surface SiO groups from deprotonated silanol termination, induced by the electrochemical treatments, are proposed as the associated counterions for the Fe3+ species. They could be responsible for the observed decrease in the electron transfer rate constant with electrode ageing.  相似文献   

19.
Ultra-thin Nb2O5 films with excellent uniformity have been grown on Si (1 0 0) by atomic-layer-deposition using Nb(OC2H5)5 and H2O precursors, and the corresponding thermal stability has been studied through atomic force microscope, transmission electron microscope and X-ray photoelectron spectroscopy. The results indicate that the ultra-thin (∼3 nm) Nb2O5 film is gradually built up into distributed large islands with increasing rapid thermal annealing (RTA) temperature. Meanwhile, both crystalline and amorphous phases are formed in the matrix of Nb2O5 annealed at 700 °C. In terms of the as-prepared sample, an interfacial layer (IL) with a thickness of around 1.5 nm is observed, that is composed of niobium silicate (Nb-O-Si). Further, the high temperature RTA leads to a thickened IL, which is attributed to the formation of more Nb-O-Si bonds and new silicon oxide (Si-O-Si) adjacent to the Si (1 0 0).  相似文献   

20.
In this work we show the adsorption of acetonitrile (CH3CN) and acrylonitrile (CH2CHCN) on Si(0 0 1)-2 × 1 at room temperature by increasing the molecular doses. Especially, by means of XPS and LEED data, we stress the action of these molecules on the silicon surface locating the dangling-bonds quasi-saturation within 10 L. The shortage of nitrogen XPS signal and some anomalies in carbon spectra point to an invading action from a traditional X-ray source (Al-Kα line) against chemisorbed molecules. In particular, we think that a long exposure to this radiation could break carbon-silicon bonds changing some adsorption geometries and making desorb molecular fragments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号