首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Hybrid organic/inorganic thin-film transistors (TFTs) with bottom-contact configuration were fabricated using the Laser Induced Forward Transfer (LIFT) process. The semiconducting polymer P3HT was laser printed from a donor to a receiver substrate in order to form the active layer of the TFTs. With a single laser pulse, P3HT pixels were successfully printed. The printed material was analyzed morphologically by means of Optical Microscopy and its thickness was measured by profilometry. In addition, structural characterization of P3HT thin films before and after laser printing took place by using UV-Visible absorption spectroscopy and X-Ray Diffraction. It was found that the crystallinity of the investigated films is improved upon annealing. An organic thin-film transistor (OTFT) with laser printed P3HT pixel as a channel layer was then fabricated. The OTFTs indicated a field-effect mobility up to 2.23?10?4 cm2/Vs and an on/off ratio on the order of 10–100.  相似文献   

2.
An organic–inorganic hybrid solar cell based on CdSe quantum dots (QDs) and poly(3-hexylthiophene) (P3HT) was fabricated. Its temperature-dependent photovoltaic behaviors, such as IV characteristic curves and open circuit voltage (Voc) transient response, were measured. The photovoltaic behavior of this hybrid thin film device was similar with that of organic thin film solar cells, according to analysis results based on the equivalent circuit method. The exact carrier lifetime was remarkably different between under low-temperature region and under temperature above 197 K.  相似文献   

3.
CdS quantum dots (QDs) were introduced as an interface modifier in the poly(3-hexylthiophene) (P3HT)/TiO2 nanorod arrays hybrid photovoltaic device. The presence of CdS QDs interlayer was found to provide enhanced light absorption, increased interfacial recombination resistance at the P3HT/TiO2 interfaces, thus leading to a lower recombination rate of the electrons due to the stepwise structure of band edge in P3HT/CdS/TiO2, which accounts for the observed enhanced photocurrent and photovoltage of the hybrid solar cells. The optimized performance was achieved in P3HT/CdS/TiO2 hybrid solar cells after deposition of CdS QDs for 10 cycles, with a power conversion efficiency of 0.57 %, which is nearly ten times higher than that of P3HT/TiO2. The findings indicate that inorganic semiconductor quantum dots provide effective means to improve the performance of polymer/TiO2 hybrid solar cells.  相似文献   

4.
Hybrid devices based on silicon nanowires (SiNWs) dispersed in a conjugated polymer poly(3-hexylthiophene) P3HT thin films have been realized. The carrier transport mechanism in inorganic/organic hybrid nancocomposites consisting of SiNW dispersed in P3HT layer was investigated by using I?CV characteristics and impedance spectroscopy measurements. The conduction mechanism in these hybrid nanocomposites has been identified to be thermionic emission at the interfaces. The electrical parameters of the structure have been investigated by modelization of the I?CV characteristics using an electrical equivalent circuit and have been extracted for the different SiNW volume ratios. The barrier height, the series resistance and the shunt resistance values of the diodes have been calculated as about 0.9 eV, several k?? and several M??, respectively. The diode behaves as non-ideal one because of the series resistance and the Donor/Acceptor interface layer. The impedance spectroscopy study, in the frequency range 100 Hz?C100 kHz, shows a typical behavior of disordered materials and indicative of a hopping transport in the investigated temperature range. The dc conductivity follows the Arrhenius law with an activation energy transition from 8.4 to 55.8?meV at about 294 K.  相似文献   

5.
We report our results on the effect of incorporation of inorganic fullerene like nanoparticles (IF) and inorganic nanotubes (INT) of WS2 into hybrid LED device structures. To disperse into a uniform fashion, the semiconducting INT/IF WS2 NTs were functionalized with SDS (sodium dodecylsulphate). The IF/INT WS2 nanotubes were used in combination with PEDOT:PSS and P3HT to realize the following LED device structures: ITO/(PEDOT:PSS):(WS2:SDS)/P3HT/LiF-Al; ITO/PEDOT:PSS/P3HT/WS2:SDS/LiF-Al. Morphological, optical and electrochemical analysis were performed to obtain the HOMO and the LUMO energy levels to hypothesize the most efficient device structure. The spectral positions of the electroluminescent bands were found out to be device-dependent and exhibits blue shift when the proposed nanostructure is dip coated on top of P3HT. Electro-optical analysis indicate that the WS2:SDS based P3HT/semiconductor film can improve the charge recombination probability owing to its dual functionality as hole blocking layer and electron injection moiety.  相似文献   

6.
In an effort to develop hybrid organic solar cells with improved power conversion efficiency (PCE), devices based on poly (3-hexylthiophene) (P3HT):phenyl C61-butyric acid methyl ester (PCBM) active layer and poly (3,4-ethylenedioxythiophene) (PEDOT):poly (styrenesulfonate) (PSS) buffer layers were prepared. A systematic replacement of PCBM was achieved by introducing nanostructured TiO2 (∼15 nm particle size), dissolved separately in chlorobenzene (CB) and 1,2 –dichlorobenzene (DCB), to the (P3HT:PCBM) active layer while keeping a fixed amount for P3HT. To understand the effect of fullerene replacement with the inorganic metal oxide nanoparticles on different properties of resulting devices, a variety of techniques such as Current–Voltage (J–V) characteristics, Field Emission Scanning Electron Microscopy (FESEM), Atomic Force Microscopy (AFM), Ultravoilet-Visible (UV–Vis) Spectrophotometry and External Quantum Efficiency (EQE) were employed. The addition of TiO2 nanoparticles in the active layer improved the power conversion efficiency (PCE) of P3HT:PCBM devices. The addition of TiO2 nanoparticles using CB as solvent enhanced the absorption in visible region and also introduced a red shift in the absorption spectra. A significant increase in EQE was observed for devices with TiO2 nanoparticles in the active layer. Mixing TiO2 also increased the surface roughness of the active layer where TiO2 nanoparticles were found to agglomerate as their concentration increased relative to fullerene derivative. A complete agglomeration of TiO2 was observed in the absence of PCBM.  相似文献   

7.
The new organic–inorganic hybrid [5-Cl-2-(CH3)C6H3NH3]4H2P6O18 has been synthesized by the slow evaporation method. X-ray diffraction on a single crystal shows that this acidic cyclohexaphosphate crystallized in the monoclinic space group C 2/c with a?=?33.89(11) Å, b?=?9.16(16) Å, c?=?13.68(3) Å, β?=?91.35(2)°, V?=?4244.9(19) Å3 and Z?=?4. 31P MAS-NMR and 13C CP/MAS-NMR results are in accordance with X-ray findings. Fluorescent study shows the blue photoluminescence. Furthermore, FT-IR analysis was studied and the complete vibrational assignments were done. Intermolecular interactions were analyzed using Hirshfeld surface analysis and the associated 2D fingerprint plots.  相似文献   

8.
In 2003, Babin et al. theoretically predicted (J. Appl. Phys. 94:4244, 2003) that fabrication of organic–inorganic hybrid materials would probably be required to implement structures with multiple photonic band gaps. In tune with their prediction, we report synthesis of such an inorganic–organic nanocomposite, comprising Cu4O3–CuO–C thin films that experimentally exhibit the highest (of any known material) number (as many as eleven) of photonic band gaps in the near infrared. On contrary to the report by Wang et al. (Appl. Phys. Lett. 84:1629, 2004) that photonic crystals with multiple stop gaps require highly correlated structural arrangement such as multilayers of variable thicknesses, we demonstrate experimental realization of multiple stop gaps in completely randomized structures comprising inorganic oxide nanocrystals (Cu4O3 and CuO) randomly embedded in a randomly porous carbonaceous matrix. We report one step synthesis of such nanostructured films through the metalorganic chemical vapor deposition technique using a single source metalorganic precursor, Cu4(deaH)(dea)(oAc)5???(CH3)2CO. The films displaying multiple (4/9/11) photonic band gaps with equal transmission losses in the infrared are promising materials to find applications as multiple channel photonic band gap based filter for WDM technology.  相似文献   

9.
We have successfully synthesized inorganic–inorganic, organic–inorganic and bio-inorganic nanohybrids by applying a chimie douce intercalation technique systematically to layered titanate, to Bi-based cuprate superconductors, Bi2Sr2Cam−1CumOy (m=1, 2, and 3; BSCCO), and to layered double hydroxides (LDHs), those which are of high importance in terms of basic understanding of intercalation reactions and also having practical application. The inorganic/inorganic hybrids were synthesized by exfoliation-restacking methods to obtain TiO2-pillared titanate. A novel pillaring procedure using an osmotic swelling had been developed to prepare TiO2-pillared layered titanate with a large surface area, high thermal stability, and enhanced photocatalytic activity. On the other hands, the organic/inorganic hybrids were achieved via intercalative complexation of iodine intercalated BSCOO with an organic salt of Py–CnH2n+1I (Py=pyridine). The high-Tc superconducting intercalate with its remarkable lattice expansion can be applied as a precursor for superconducting colloids when dispersed in an appropriate solvent. We were also able to demonstrate that the biomolecules stabilized in the interlayer space of layered double hydroxides (LDH), bio-inorganic hybrids, retain their chemical and biological integrity. If necessary, LDH, as a reservoir, can be intentionally removed by dissolving it in an acidic medium or interlayer biomolecules in LDH can be released via ion-exchange reaction in electrolyte. It can, therefore, be concluded that the inorganic LDH can play a role as a good host lattice for gene reservoir or carrier. These intercalative methods will provide remarkable synthetic routes to design new heterogeneous hybrid materials, which have the intrinsic properties starting materials and create synergetic effects by hybridization.  相似文献   

10.
Our study examined a series of hybrid composites containing copolyacrylate with semicarbazide-dansyl groups prepared by conventional radical polymerization of monomers in the organic montmorillonite modified with alkyl chains of variable length or using the sol-gel technique. The structure and the chemical composition of the copolymers Nmethacryloyloxyethylcarbamoyl-5-(dimethylaminonaphtalene-1-sulfonohydrazine)-co-methyl metahacrylate (DnsSA-co-MMA) and Nmethacryloyloxyethylcarbamoyl-5-(dimethylaminonaphtalene-1-sulfonohydrazine)-co-dodecylacrylamide (DnsSA-co-DA) as well as their nanocomposites (HC-P1, HC-P2, HC-P3, HC-P4) were confirmed by spectral analysis (1H NMR, FTIR, UV/vis), thermal methods and atomic force microscopy. To quantify the effect of the inorganic component compared to pure photopolymers we evaluated the properties of hybrid composites, including dielectric characterization. Additionally, these materials have been tested in experiments of fluorescence quenching by acids (HCl, p-toluenesulfonic acid, 1-S-camphorsulfonic acid), metallic cation (Cu2+) and nitrobenzene. The results suggest that such nanocomposites could find applications as fluorescence-based chemosensors in homogeneous organic solutions or thin films.  相似文献   

11.
Degradation and short shelf life have been observed experimentally in poly(3-hexylthiophene) (P3HT): 6,6-phenyl C61-butyric acid methyl ester (PCBM) based blend solar cells. Both dark and illuminated current–voltage characteristics could be explained quantitatively with a proposed single model for a typical degraded organic solar cell-glass/ITO/PEDOT:PSS/P3HT:PCBM/Al. It has been found that surface state density, interface thickness, tunneling coefficient and occupation probabilities of the interface states becomes important with the passage of time. To look into the problem the activity at ITO/PEDOT:PSS and P3HT:PCBM/Al interfaces are studied using realistic values of the interfaces. The experimental J–V characteristics is well explained with the inclusion of tunneling current through these surface states and becomes the dominant current component for the degraded cell. It is also found that surface state density increases to 1012–1013 cm−2 eV−1, which has been verified with CV measurements and also is in agreement with our proposed model for BHJ solar cell after 150 h of fabrication.  相似文献   

12.
彭瑞祥  陈冲  沈薇  王命泰  郭颖  耿宏伟 《物理学报》2009,58(9):6582-6589
以局域规整聚(3-己基噻吩) (P3HT)制备了TiO2/聚合物型双层结构光伏电池.利用稳态电流-电压测试和动态强度调制光电压谱,结合差热分析、吸收光谱和荧光光谱, 研究了非晶支化聚亚乙基亚胺(BPEI)作为P3HT膜层的添加成分对TiO2/P3HT双层电池性能的影响.由于P3HT链的高结晶性,使得TiO2/P3HT界面接触不好,导致电池性能差.当在P3HT中共混重量比WBPEI/P3HT=1%—5%的BPEI时,电池性能得到显著改善;尤其是当WBPEI/P3HT= 1%时,电池表现出近0.8V的开路电压和20μA/cm2的短路电流.结果表明BPEI对电池性能的影响不是源于P3HT-BPEI共混体系光学性能的变化,而主要是由于其改变了TiO2/P3HT界面接触性能.BPEI对TiO2/P3HT界面接触有两个相互竞争的影响,这取决于P3HT-BPEI共混体系的组成.一方面,通过降低P3HT的结晶度和增强与TiO2表面的相互作用,改善P3HT链在TiO2 表面的附着;另一方面,当BPEI含量过高时,BPEI在TiO2表面的附着量将增加,反而会阻碍P3HT与TiO2表面的接触.良好的TiO2/P3HT界面接触有利于提高激子的界面分离效率、光生电子的寿命和电池效率.本文结果有望为聚合物光伏电池性能的改善提供新的认识和方法. 关键词: 聚(3-己基噻吩) 二氧化钛 共轭聚合物 光伏电池  相似文献   

13.
In this study, we explored the ability of a preheated solvent (methanol) to induce characteristic changes at the organic active layer/metal interface, thereby improving the performance of fabricated organic photovoltaic (OPV) cells composed of poly(3-hexylthiopene) (P3HT) and a [6,6]-phenyl-C71-butyric acid methyl ester (PCBM) photoactive blend. Our results demonstrate that exposure to methanol (at room temperature, or preheated at 45 °C or 65 °C) improves the performance of the fabricated OPV cells. After preheated methanol exposure, the P3HT:PCBM thin films were tested for crystallinity, morphology, mobility, and photovoltaic characteristics. Our results revealed that use of the preheated solvent on the organic active layer significantly influences the micro/nano scale morphology and phase segregation of the P3HT:PCBM thin films, as well as the charge carrier mobility. It is hypothesized that the side chain ordering of P3HT and redistribution of PCBM could be results of the modified active layer. Consequently, OPV cells modified with the methanol preheated at 65 °C exhibited a power conversion efficiency (PCE) of 3.36%, with open-circuit voltage of 0.59 V, short-circuit current density of 13.83 mA/cm2, and fill-factor of 0.41. In contrast, the unmodified P3HT:PCBM thin film (without methanol exposure) showed a PCE of only 2.13%.  相似文献   

14.
Laser-induced forward transfer (LIFT) has been investigated for the transfer of a polymeric material. This study focuses on the comparison of the printing process using conventional LIFT printing with a simple square mask and an optimized LIFT technique using a double mask setup, i.e. smart beam shaping (SBS). The purpose is to optimize the energy repartition on the donor layer using a beam profile with over-intensities at the edges and low intensities in the center. This allows the incoming irradiation fluence on the donor layer to be kept as low as possible in the central area, thus preventing the organic pixels being damaged by laser irradiation. The influence of the film’s thickness on the SBS efficiency is discussed.  相似文献   

15.
We have successfully synthesized inorganic–inorganic, organic–inorganic and bio-inorganic nanohybrids by applying an intercalation technique systematically to layered titanate, molybdenum disulfide (MoS2), Bi-based cuprate superconductors (Bi2Sr2Cam−1CumOy (m=1, 2, and 3; BSCCO)), and to layered double hydroxides (LDHs), those which are of high importance in terms of basic understanding of intercalation reactions and of their practical applications. The inorganic–inorganic systems such as TiO2-pillared titanate, TiO2-pillared MoS2, and CdS–MoS2 hybrids were synthesized by exfoliation–restacking method. A novel pillaring process using an osmotic swelling was developed to prepare TiO2-pillared layered titanate with a large surface area, high thermal stability, and enhanced photocatalytic activity. And the intercalation of TiO2 and/or CdS nanocluster into the two dimensional MoS2 lattice could be also realized by exfoliating and reassembling the lithiated molybdenum disulfide (LiMoS2) in the presence of cationic TiO2 and/or CdS nanocluster in an aqueous solution, respectively, to obtain the semiconductor–semiconductor hybrids. On the other hands, the organic–inorganic hybrids were achieved via intercalative complexation of iodine intercalated BSCOO with organic salt of Py–CnH2n+1I (Py=pyridine). The high-Tc superconducting intercalate with its remarkable lattice expansion can be applied as a precursor for superconducting colloids when dispersed in an appropriate solvent. This superconducting hybrid material had an unique structural feature of a superconducting-insulating-superconducting multilayer with atomically clean interfaces. Especially, this organic–inorganic nanohybrid is expected to be a promising precursor for preparing the superconducting colloidal suspension, which could be applied to the fabrication of superconducting films or wires. Recently, we were very successful in demonstrating in which the formation of bio-inorganic hybrids stabilized in the interlayer space of LDH retain their chemical and biological integrity. If necessary, LDH, as a reservoir, can be intentionally removed by dissolving it in an acidic media in such a way the interlayer biomolecules can be recovered or the intercalated biomolecules can be released from the LDH via ion-exchange reaction in electrolyte. It is, therefore, concluded that the inorganic LDH can play a role as a gene reservoir or carrier for various unstable organic or bio-molecules such as drugs and genes.  相似文献   

16.
Electrolytes are finding applications as dielectric materials in low-voltage organic thin-film transistors (OTFT). The presence of mobile ions in these materials (polymer electrolytes or ion gels) gives rise to very high capacitance (>10 μF/cm2) and thus low transistor turn-on voltage. In order to establish fundamental limits in switching speeds of electrolyte gated OFETs, we carry out in situ optical spectroscopy measurement of a poly(3-hexylthiophene) (P3HT) OTFT gated with a LiClO4:poly(ethyleneoxide) (PEO) dielectric. Based on spectroscopic signatures of molecular vibrations and polaron transitions, we quantitatively determine charge carrier concentration and diffusion constants. We find two distinctively different regions: at V G≥−1.5 V, drift-diffusion (parallel to the semiconductor/dielectric interface) of hole-polarons in P3HT controls charging of the device; at V G<−1.5 V, electrochemical doping of the entire P3HT film occurs and charging is controlled by drift/diffusion (perpendicular to the interface) of ClO4 counter ions into the polymer semiconductor.  相似文献   

17.
The aim of this work is the pulsed laser printing of liquid-phase exfoliated graphene in the nanosecond regime and the optimization of the printing process on Si/SiO2 and flexible polymer substrates (polyethylene naphthalate) via the laser-induced forward transfer technique (LIFT). The laser printing conditions and the optimum energy fluence window for reproducible deposition have been investigated, while the deposited graphene features have been studied morphologically and structurally by means of optical microscopy, micro-Raman spectroscopy and electrical characterization. LIFT experiments were carried out using the fourth harmonic (266 nm) of a pulsed ns Nd:YAG laser combined with a high-power imaging micromachining system to monitor the printing process throughout the experiments. The irradiation of our graphene solution resulted in the deposition of well-resolved patterns on different surfaces, highlighting LIFT as an alternative technique for the printing and patterning of liquid-phase exfoliated graphene for organic electronics applications.  相似文献   

18.
In this work, ternary CuInSe2 (CISe) chalcopyrite nanocrystallites efficiently passivated by a novel combination of capping agents viz: aniline and 1-octadecene during chemical route synthesis were dispersed in conducting polymer matrix poly(3-hexylthiophene) (P3HT). By varying the composition and concentration of the ligands, the properties of the resulting CISe nanocrystallites and its corresponding polymer nanocomposites thus could be tailored. The structural, morphological and optical studies accomplished by various complimentary techniques viz. Transmission Electron Microscopy (TEM), Contact angle, Photoluminescence (PL) and Raman have enabled us to compare the different hybrid organic (polymer)-inorganic nanocomposites. On the basis of aniline–octadecene equilibrium phase diagram, the polydispersity of the CISe nanocrystals could be tuned by using controlled variations in the reaction conditions of nucleation and growth such as composition of the solvent and temperature. To the best of author’s knowledge, the beneficial effects of both the capping agents; aniline and octadecene contributing well in tandem in the development of large-sized (100–125 nm) high quality, sterically- and photo-oxidative stable polycrystalline CISe and its corresponding polymer (P3HT):CISe composites with enhanced charge transfer efficiency has been reported for the first time. The low-cost synthesis and ease of preparation renders this method of great potential for its possible application in low-cost hybrid organic–inorganic photovoltaics.  相似文献   

19.
Over the past decades, organic solar cells based on semiconducting polymers or small molecules have become a promising alternative to traditional inorganic photovoltaic devices. However, to address the intrinsic limitations of organic materials, such as charge separation yield, charge transport and durability, new strategies based on hybrid organic/inorganic materials have been explored. One such approach exploits mesoporous inorganic nanostructures as electron acceptors, which takes advantage of the potential to control the active layer structure and interface morphology through nanoparticle synthesis and processing. In this work, the potential of hybrid photovoltaics will be discussed and illustrated through a recent study of bulk heterojunction systems based on the blend of TiO2 nanorods with a conjugated polymer. To cite this article: J. Bouclé et al., C. R. Physique 9 (2008).  相似文献   

20.
《Current Applied Physics》2010,10(4):1132-1136
We synthesized a new photo-curable organic/inorganic hybrid material, cyclotetrasiloxane (CTS) derivative containing cyclohexene-1,2-epoxide functional groups (CTS-EPOXY), and its characteristics are compared with a prototypical organic gate insulator of poly(4-vinylphenol) (PVP) in the organic thin film transistors (OTFTs) using pentacene as an active p-type organic semiconductor. Compared with PVP, CTS-EPOXY shows better insulating characteristics and surface smoothness. A metal/insulator/metal (MIM) device with the 300-nm-thick CTS-EPOXY film shows more than two orders of magnitude lower current (less than 40 nA/cm2 over the voltage range up to 60 V) compared with PVP. In addition, the pentacene TFT with CTS-EPOXY as a gate dielectric layer shows slightly higher field-effect mobility of μFET = 0.20 cm2/V s compared to that with PVP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号