首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
An in-plane magnetic anisotropy of FePt film is obtained in the MgO 5 nm/FePt t nm/MgO 5 nm films (where t=5, 10 and 20 nm). Both the in-plane coercivity (Hc∥) and the perpendicular magnetic anisotropy of FePt films are increased when introducing an Ag-capped layer instead of MgO-capped layer. An in-plane coercivity is 3154 Oe for the MgO 5 nm/FePt 10 nm/MgO 5 nm film, and it can be increased to 4846 Oe as a 5 nm Ag-capped layer instead of MgO-capped layer. The transmission electron microscopy (TEM)-energy disperse spectrum (EDS) analysis shows that the Ag mainly distributed at the grain boundary of FePt, that leads the increase of the grain boundary energy, which will enhance coercivity and perpendicular magnetic anisotropy of FePt film.  相似文献   

2.
High saturation magnetization soft magnetic FeCo (=Fe65Co35) films were prepared using a thin Co underlayer. The FeCo/Co films exhibited a well-defined in-plane uniaxial anisotropy with easy axis coercivity (Hce) of 10 Oe and hard axis coercivity (Hch) of 3 Oe, and a half reduction of Hc with Hce=4.8 Oe and Hch=1.0 Oe was obtained when the composition was adjusted to 25 at% Co. The effective permeability of the films remains flat around 250 to 800 MHz. The saturation magnetostriction was 5.2×10−5 and the intrinsic stress was 0.8 GPa in FeCo single layer, both were slightly reduced by Co underlayer. The Co underlayer changed the preferred orientation of the FeCo films from (2 0 0) to (1 1 0) but more significantly, reduced the average grain size from ∼74 to ∼8.2 nm. It also reduced the surface roughness from 2.351 to 0.751 nm. The initial stage and interface diffusion properties were examined by TEM and XPS.  相似文献   

3.
High permeability magnetic films can enhance the inductance of thin-film inductors in DC-DC converters. In order to obtain high permeability, the uniaxial anisotropy and coercivity should be as low as possible. This study employed dc reactive magnetron sputtering to fabricate nanocrystalline FeHfN thin films. The influence of the nitrogen flow on the composition, microstructure, and permeability characteristics, as well as magnetic properties was investigated. Increasing the nitrogen content can alter FeHfN films from amorphous-like to crystalline phases. The magnetic properties and permeability depend on variations in the microstructure. With the optimum N2/Ar flow ratio of 4.8% (N2 flow: 1.2 sccm), low anisotropy (HK = 18 Oe), low coercivity (HC = 1.1 Oe) and high permeability (μ′ > 600 at 50 MHz) were obtained for fabrication of a nanocrystalline FeHfN film with a thickness of around 700 nm. Such as-fabricated FeHfN films with a permeability of over 600 should be a promising candidate for high-permeability ferromagnetic material applications.  相似文献   

4.
The structure, magnetic properties and magnetostriction of Fe81Ga19 thin films have been investigated by using X-ray diffraction analysis, scanning electron microscope (SEM), vibrating sample magnetometer and capacitive cantilever method. It was found that the grain size of as-deposited Fe81Ga19 thin films is 50–60 nm and the grain size increases with increase in the annealing temperature. The remanence ratio (Mr/Ms) of the thin films slowly decreases with increase in the annealing temperature. However, the coercivity of the thin films goes the opposite way with increase in the annealing temperature. A preferential orientation of the Fe81Ga19 thin film fabricated under an applied magnetic field exists along 〈1 0 0〉 direction due to the function of magnetic field during sputtering. An in-plane-induced anisotropy of the thin film is well formed by the applied magnetic field during the sputtering and the formation of in-plane-induced anisotropy results in 90° rotations of the magnetic domains during magnetization and in the increase of magnetostriction for the thin film.  相似文献   

5.
Microstructure, static magnetic properties and microwave permeability of sputtered FeCo films were examined. Fe60Co40 films (100 nm in thickness) deposited on glass substrates exhibited in-plane isotropy and a large coercivity of 161.1 Oe. When same thickness films were deposited on 2.5 nm Co underlayer, well-defined in-plane anisotropy was formed with an anisotropy field of 65 Oe. The sample had a static initial permeability of about 285, maximum imaginary permeability of 1255 and ferromagnetic resonance frequency of 2.71 GHz. Cross-sectional TEM image revealed that the Co underlayer had induced a columnar grain structure with grain diameter of 10 nm in the FeCo films. In comparison, FeCo films without Co underlayer showed larger grains of 70 nm in diameter with fewer distinct vertical grain boundaries. In addition, the Co underlayer changed the preferred orientation of the FeCo from (1 0 0) to (1 1 0). The improvement in soft magnetic properties and microwave behavior originates from the modification of the film microstructure, which can be well understood by the random anisotropy theory.  相似文献   

6.
The magnetic properties of strontium hexaferrite (SrFe12O19) films fabricated by pulsed laser deposition on the Si(100) substrate with Pt(111) underlayer have been studied as a function of film thickness (50–700 nm). X-ray diffraction patterns confirm that the films have c-axis perpendicular orientation. The coercivities in perpendicular direction are higher than those for in-plane direction which indicates the films have perpendicular magnetic anisotropy. The coercivity was found to decrease with increasing of thickness, due to the increasing of the grain size and relaxation in lattice strain. The 200 nm thick film exhibits hexagonal shape grains of 150 nm and optimum magnetic properties of Ms=298 emu/cm3 and Hc=2540 Oe.  相似文献   

7.
Co92Zr8(50 nm)/Ag(x) soft magnetic films have been prepared on Si (111) substrates by oblique sputtering at 45°. Nanoparticle size of Co92Zr8 soft magnetic films can be tuned by thickening Ag buffer layer from 9 nm to 96 nm. The static and dynamic magnetic properties show great dependence on Ag buffer layer thickness. The coercivity and effective damping parameter of Co92Zr8 films increase with thickening Ag buffer layer. The intrinsic and extrinsic parts of damping were extracted from the effective damping parameter. For x=96 nm film, the extrinsic damping parameter is 0.028, which is significantly larger than 0.004 for x=9 nm film. The origin of the enhancement of extrinsic damping can be explained by increased inhomogeneity of anisotropy. Therefore, it is an effective method to tailor magnetic damping parameter of thin magnetic films, which is desirable for high frequency application.  相似文献   

8.
Nanocrystalline Co2xNi0.5−xZn0.5−xFe2O4 (x=0−0.5) thin films have been synthesized with various grain sizes by a sol-gel method on polycrystalline silicon substrates. The morphology as well as magnetic and microwave absorption properties of the films calcined at 1073 K were studied using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and vibrating sample magnetometry. All films were uniform without microcracks. The Co content in the Co-Ni-Zn films resulted in a grain size ranging from 15 to 32 nm while it ranged from 33 to 49 nm in the corresponding powders. Saturation and remnant magnetization increased with increase in grain size, while coercivity demonstrated a drop due to multidomain behavior of crystallites for a given value of x. Saturation magnetization increased and remnant magnetization had a maximum as a function of grain size independent of x. In turn, coercivity increased with x independent of grain size. Complex permittivity of the Co-Ni-Zn ferrite films was measured in the frequency range 2-15 GHz. The highest hysteretic heating rate in the temperature range 315-355 K was observed in CoFe2O4. The maximum absorption band shifted from 13 to 11 GHz as cobalt content increased from x=0.1 to 0.2.  相似文献   

9.
We have investigated the influence of composition and annealing conditions on the magnetic properties and microstructural features of SmCox films that were prepared by sputtering and subsequent annealing. A huge in-plane coercivity of 5.6 T was obtained from an optimally annealed Sm–Co film, which was attributed to the nanometer sized polycrystalline microstructure of the highly anisotropic SmCo5 phase. Although a high density of planar defects were observed in the films that were annealed at high temperatures, they did not act as strong pinning sites for domain wall motion. The effect of Cu on [SmCo4.5(9 nm)/Cu(xnm)]10 multilayer thin films was also studied. An appropriate Cu content increased the coercivity.  相似文献   

10.
The structural and magnetic properties of as-grown 5–50 nm thin ion-beam sputter deposited transition metal–metalloid Co20Fe60B20 (CFB) films are reported in this communication. A broad peak observed at 2θ∼45° in the glancing angle X-ray diffraction pattern revealed the formation of very fine nano-sized grains embedded in majority amorphous CFB matrix. Although no magnetic field is applied during deposition, the longitudinal magneto-optic Kerr effect measurements performed at 300 K in these as-grown films clearly established the presence of in-plane uniaxial magnetic anisotropy (Ku). It is argued that this observed anisotropy is strain-induced. This is supported by the observed dependence of direction of Ku on the angle between applied magnetic field and crystallographic orientation of the underlying Si(100) substrate, and increase in the coercivity with the increase of the film thickness.  相似文献   

11.
A series of 20 and 100 nm Fe53Pt47 thin films sputter-deposited onto Si substrates have been thermally annealed using a pulsed thermal plasma arc lamp. A series of one, three or five pulses were applied to the thin films with widths of either 50 or 100 ms. The microstructure and magnetic properties of these annealed Fe53Pt47 films are discussed according to the various annealing conditions and A1 to L10 phase transformation. Upon pulse annealing, the average in-plane grain size of 15 nm (nearly equivalent for both film thicknesses) was observed to increase to values near 20 nm. In general, increasing the pulse width or number of pulses increased the L10 order parameter, tetragonality of the c/a ratio and coercivity of the specimen. The exception to this trend was for five pulses at 100 ms for both film thicknesses, which indicated a reduction of the order parameter and coercivity. This reduction is believed to be a result of the interdiffusion of Fe and Pt into the Si substrate and the formation of iron oxide clusters in the grain boundaries characterized by atom probe tomography.  相似文献   

12.
The effects of oxygen pressure during deposition on microstructure and magnetic properties of strontium hexaferrite (SrFe12O19) films grown on Si (100) substrate with Pt (111) underlayer by pulsed laser deposition have been investigated. X-ray diffraction pattern confirms that the films have c-axis perpendicular orientation. The c-axis dispersion (Δθ50) increases and c-axis lattice parameter decreases with increasing oxygen pressure. The films have hexagonal shape grains with diameter of 150-250 nm as determined by atomic force microscopy. The coercivities in perpendicular direction are higher than those in in-plane direction, which shows the films have perpendicular magnetic anisotropy. The saturation magnetization and anisotropy field for the film deposited in oxygen pressure of 0.13 mbar are comparable to those of the bulk strontium hexaferrite. Higher oxygen pressure leads to the films having higher coercivity and squareness. The coercivity in perpendicular and in-plane directions of the film deposited in oxygen pressure of 0.13 mbar are 2520 Oe and 870 Oe, respectively.  相似文献   

13.
FePt–SiNx–C films with high coercivity, (001) texture and small grain size were obtained by co-sputtering FePt, Si3N4 and C on TiN/CrRu/glass substrate at 380 °C. Without C doping, FePt–SiNx films with good perpendicular anisotropy and a single layer structure were obtained. However, the grain size was still too large and the grain isolation was poor. When C was doped into the FePt–SiNx films, the out-of-plane coercivity increased due to the decrease of the exchange coupling. In addition, the grain size of the FePt films decreased, and well-separated FePt grains with uniform size were formed. The microstructure of [FePt–SiNx 40 vol%]−20 vol% C films changed from a single layer structure to a multiple layer structure when the FePt thickness was increased from 4 to 10 nm. By optimizing the sputtering process, the [FePt (4 nm)–SiNx 40 vol%]−20 vol% C (001) film with coercivity higher than 21.5 kOe, a single layer structure, and small average FePt grain size of 5.6 nm was obtained, which makes it suitable for ultrahigh density perpendicular recording.  相似文献   

14.
Strontium hexaferrite (SrFe12O19) films have been fabricated by pulsed laser deposition on Si(1 0 0) substrate with Pt(1 1 1) underlayer through in situ and post annealing heat treatments. C-axis perpendicular oriented SrFe12O19 films have been confirmed by X-ray diffraction patterns for both of the in situ heated and post annealed films. The cluster-like single domain structures are recognized by magnetic force microscopy. Higher coercivity in perpendicular direction than that for the in-plane direction shows that the films have perpendicular magnetic anisotropy. High perpendicular coercivity, around 3.8 kOe, has been achieved after post annealing at 500 °C. Higher coercivity of the post annealed SrFe12O19 films was found to be related to nanosized grain of about 50–80 nm.  相似文献   

15.
Soft magnetic thin films of Ni, NiFe and NiFe2O4 were prepared using reactive magnetron sputtering in various deposition conditions. Experimentally observed soft magnetic property was compared and correlated with nanocrystalline structure evolution. Ni and NiFe deposited films are textured with fcc(111) phase preferred orientation. Accordingly, grain size and lattice parameter were calculated from X-ray diffraction (111) peak line width and 2θ peak position. Addition of reactive gas oxygen in deposition process has substantial effect on crystalline structure of film. There is phase transition from the ordered NiFe (111) structure to the NiFe2O4 nanocrystalline phase. The resulting film has shown small X-ray diffraction intensity peak corresponding to (311) and (400) orientation, indicating small amount of existing NiFe2O4 phase. The mechanism has been discussed to be responsible for nanocrystallization and amorphization of NiFe2O4 films. Magnetic measurement (M-H) loop reveal soft magnetic nature of films with magnetic anisotropy. The coercivity (Hc) of films is in accordance with random anisotropy model, where Hc reduced with grain size. The structural transformation was supported by Fourier transforms infrared spectroscopy measurement. The films are highly smooth with surface roughness in the range of ∼0.53-0.93 nm. NiFe2O4 films have shown lowest surface roughness with highest electrical resistivity values. The structural, surface, magnetic and infrared spectroscopy results are observed and analyzed.  相似文献   

16.
The effect of Cr100−xTix underlayer on orderd-L10 FePt films was investigated. A low-temperature ordering of FePt films could be attained through changing the Ti content of Cr100−xTix underlayer. The ordering temperature of the 30 nm FePt film grown on 20 nm Cr90Ti10 underlayer was reduced to 250 °C which is practical manufacture process temperature. An in-plane coercivity was very high to 6000 Oe and a ratio of remnant magnetization (Mr) to saturation magnetization (Ms) was as large as 0.85. This result indicates that the coercivity obtained at 250 °C by the effect of CrTi underlayer is significantly higher than those obtained at 250-275 °C by the effect of underlayers in other conventional studies. The prominent improvement of the magnetic properties of ordered FePt thin films at low temperature of 250 °C could be understood with considering the strain-induced ordering phase transformation associated with lattice mismatch between Cr underlayer and FePt magnetic layer due to an addition of Ti content.  相似文献   

17.
Bilayered Fe65Co35 (=FeCo)/Co films were prepared by facing targets sputtering with 4πMs∼24 kg. The soft magnetic properties of FeCo films were induced by a Co underlayer. Hc decreased rapidly when the Co underlayer was 2 nm or more. The films showed well-defined in-plane uniaxial anisotropy with the typical values of Hce=10 Oe and Hch=3 Oe, respectively. High frequency characteristics of the films show the films can work at 0.8 GHz with real permeability as high as 250.  相似文献   

18.
We present a systematic study on magnetic properties of co-sputtered Tb-Co2FeAl (TCFA) films. The TCFA films with suitable Tb content have perpendicular magnetic anisotropy (PMA). The PMA deteriorates with both decreasing film thickness and high temperature annealing. Under a certain thickness, the perpendicular coercivity of the TCFA films with PMA can be reduced down to 60 Oe, which is comparable with normal soft ferromagnets. After annealing at 100 °C, a large remanence squareness of 0.95 is observed in the TCFA film with 33% Tb and a thickness of 30 nm.  相似文献   

19.
A comparative study of the out-of-plane anisotropic magnetoresistance (AMR) in single crystalline and polycrystalline thin films of phase separated manganite Nd0.51Sr0.49MnO3 has been carried out. On-axis DC magnetron sputtering was used to deposit the single crystalline films (30 and 100 nm in thickness) on single crystal (0 0 1) LaAlO3 (LAO) and polycrystalline films (100 nm) on (1 0 0) Yttrium-stabilized ZrO2 (YSZ) substrates. The in-plane and out-of-plane magnetotransport properties of these films differ significantly. A large low field AMR is observed in all the films. AMR shows a peak below the insulator-metal transition temperature in the single crystalline films, while the same increases monotonically in the polycrystalline film. Relatively larger low field AMR (∼20% at T=78 K and H=1.7 kOe) in the polycrystalline films suggests the dominance of the shape anisotropy.  相似文献   

20.
We report synthesis of a transparent magnetic semiconductor by incorporating Ni in zinc oxide (ZnO) matrix. ZnO and nickel-doped zinc oxide (ZnO:Ni) thin films (∼60 nm) are prepared by fast atom beam (FAB) sputtering. Both undoped and doped films show the presence of ZnO phase only. The Ni concentration (in at%) as determined by energy dispersive X-ray (EDX) technique is ∼12±2%. Magnetisation measurement using a SQUID magnetometer shows that the Ni-doped films are ferromagnetic, having coercivity (Hc) values 192, 310 and 100 Oe and saturation magnetization (Ms) values of 6.22, 5.32 and 4.73 emu/g at 5, 15 and 300 K, respectively. The Ni-doped film is transparent (>80%) across visible wavelength range. Resistivity of the ZnO:Ni film is ∼2.5×10−3 Ω cm, which is almost two orders of magnitude lower than the resistivity (∼4.5×10−1 Ω cm) of its undoped counterpart. Impurity d-band splitting is considered to be the cause of increase in conductivity. Interaction between free charges generated by doping and localized d spins of Ni is discussed as the reason for ferromagnetism in the ZnO:Ni film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号