首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The microbial transformation of five flavans (1-5) by endophytic fungi isolated from the tea plant Camellia sinensis was investigated. It was found that the endophytic filamentous fungus Diaporthe sp. oxidized stereoselectively at C-4 position of (+)-catechin (1) and (-)-epicatechin (2) to give the correspondent 3,4-cis-dihydroxyflavan derivatives (6, 10), respectively. (-)-Epicatechin 3-O-gallate (3) and (-)-epigallocatechin 3-O-gallate (4) were also oxidized by the fungus into 3,4-dihydroxyflavan derivatives (10, 12) via (-)-epicatechin (2) and (-)-epigallocatechin (11), respectively. Meanwhile, (-)-gallocatechin 3-O-gallate (5), (-)-catechin (ent-1) and (+)-epicatechin (ent-2), which possess a 2S-phenyl substitution, resisted the biotransformation.  相似文献   

2.
A human intestinal bacterium, Eubacterium (E.) sp. strain SDG-2, was tested for its ability to metabolize various (3R)- and (3S)-flavan-3-ols and their 3-O-gallates. This bacterium cleaved the C-ring of (3R)- and (3S)-flavan-3-ols to give 1,3-diphenylpropan-2-ol derivatives, but not their 3-O-gallates. Furthermore, E. sp. strain SDG-2 had the ability of p-dehydroxylation in the B-ring of (3R)-flavan-3-ols, such as (-)-catechin, (-)-epicatechin, (-)-gallocatechin and (-)-epigallocatechin, but not of (3S)-flavan-3-ols, such as (+)-catechin and (+)-epicatechin.  相似文献   

3.
A new acetylated flavanol, 3,7-O-diacetyl (-)-epicatechin (3), and seven known flavanol derivatives, (-)-epicatechin (1), 3-O-acetyl (-)-epicatechin (2), 3,3',4',5,7-O-pentaacetyl (-)-epicatechin (4), (+)-afzelechin (5), (+)-catechin (6), cinchonain Ib (7), and proanthocyanidin B2 (8), were isolated from the stems and twigs of the mangrove plant Rhizophora stylosa and identified. The crude extract, the different fractions and all of the purified compounds were evaluated for DPPH radical scavenging activity.  相似文献   

4.
This report discusses a novel type of arylsulfotransferase (AST) which was derived from human intestinal bacterium sulfated polyphenolic compounds when p-nitrophenyl sulfate (PNS) was taken as a donor substrate. (+)-Catechin, (+/-)-catechin, (-)-epicatechin and (-)-epicatechin gallate were better substrates than tyramine. (-)-Epigallocatechin and (-)-epigallocatechin gallate were slightly worse substrates than tyramine. Although gallic acid was a bad substrate, alkyl gallate esters were better substrates than tyramine. The degree of acceptor specificity increased in proportion to the length of the alkyl group up to the carbon number of five. Pedunculagin, geraniin and corilagin were less effective than tyramine. Rosmarinic acid and penta-O-galloyl-beta-D-glucose were similarly well sulfated. Two products, 4'-monosulfate and 4',5-disulfate of (+)-catechin, were detected at a two-fold molar excess of PNS over (+)-catechin. When (+)-catechin-4'-monosulfate as an acceptor was enzymatically sulfated with PNS as a donor, only the 4',5-disulfate was produced. Thus, arylsulfotransferase was useful for the convenient preparation of sulfate esters of polyphenols at their specific hydroxyl groups.  相似文献   

5.
Two new acetophenone diglycosides, erythroxylosides A and B, were isolated from the aerial portion of Erythroxylum cambodianum together with (+)-catechin, (-)-epicatechin, quercetin 3-O-rutinoside, (3S,5R,6R,7E,9S-megastigman-7-ene-3,5,6,9-tetrol 3-O-beta-D-glucopyranoside and citroside A. The structural elucidations were based on analyses of chemical and spectroscopic data.  相似文献   

6.
From the acetone extract of fresh-betel nuts, two procyanidin pentamers, two procyanidin tetramers and three procyanidin trimers, along with (+)-catechin, (-)-epicatechin, procyanidin A-l, procyanidin B-l, procyanidin B-2, and procyanidin B-7 were isolated. Based on 1H NMR and 13C NMR spectral data as well as the results of thiolysis degradation, the chemical structures of two series of oligomeric arecatannins A and B have been established. The arecatannins from betel nuts were found to be condensed-type tannins which possess (-)-epicatechin unit and (+)-catechin units. All arecatannins had C4-C8 linked (-)-epicatechin in the upper units whereas the (+)-catechin in the terminal unit had C4-C8 or C4-C6 linkage.  相似文献   

7.
The radical C-glycosidation of (-)-(1S,4R,5R, 6R)-6-endo-chloro-3-methylidene-5-exo-(phenylseleno)-7-ox abi cyclo[2. 2.1]heptan-2-one ((-)-4) with 2,3,4, 6-tetra-O-acetyl-alpha-D-mannopyranosyl bromide gave (+)-(1S,3R,4R, 5R,6R)-6-endo-chloro-5-exo-(phenylseleno)-3-endo-(1',3',4', 5'-tetra-O-acetyl-2', 6'-anhydro-7'-deoxy-D-glycero-D-manno-heptitol-7'-C-yl)-7-oxabi cyc lo[ 2.2.1]hept-2-one ((+)-5) that was converted into (+)-(1R,2S,5R, 6R)-5-acetamido-3-chloro-2-hydroxy-6-(1',3',4',5'-tetra-O-acetyl)-2', 6'-anhydro-7'-deoxy-D-glycero-D-manno-heptitol-7'-C-yl)cyclohex -3-en- 1-yl acetate ((+)-10) and into (+)-(1R,2S,5R, 6S)-5-bromo-3-chloro-2-hydroxy-6-(1',3',4',5'-tetra-O-acetyl-2', 6'-anhydro-7'-deoxy-D-glycero-D-manno-heptitol-7'-C-yl)cyclohex -3-en- 1-yl acetate ((+)-19). Ozonolysis of (+)-10 and further transformations provided 2-acetamido-2,3-dideoxy-3-C-(2', 6'-anhydro-7'-deoxy-D-glycero-D-manno-heptitol-7'-C-yl)-D-galac tos e (alpha-C(1-->3)-D-mannopyranoside of N-acetylgalactosamine (alpha-D-Manp-(1-->3)CH(2)-D-GalNAc): 1). Displacement of the bromide (+)-19 with NaN(3) in DMF provided the corresponding azide ((-)-20) following a S(N)2 mechanism. Ozonolysis of (-)-20 and further transformations led to 2-acetamido-2,3-dideoxy-3-C-(2', 6'-anhydro-7'-deoxy-D-glycero-D-manno-heptitol-7'-C-yl)-D-talose (alpha-C(1-->3)-D-mannopyranoside of N-acetyl D-talosamine (alpha-D-Manp-(1-->3)CH(2)-D-TalNAc): 2). The neutral C-disaccharide 1 inhibits several glycosidases (e.g., beta-galactosidase from jack bean with K(i) = 7.5 microM, alpha-L-fucosidase from human placenta with K(i) = 28 microM, beta-glucosidase from Caldocellum saccharolyticum with K(i) = 18 microM) and human alpha-1, 3-fucosyltransferase VI (Fuc-TVI) with K(i) = 120 microM whereas it 2-epimer 2 does not. Double reciprocal analysis showed that the inhibition of Fuc-TVI by 1 displays a mixed pattern with respect to both the donor sugar GDP-fucose and the acceptor LacNAc with K(i) of 123 and 128 microM, respectively.  相似文献   

8.
The objective of the present study was to evaluate the amount of some potential health-promoting phenols in the grape of Vitis vinifera cv. Cesanese d'Affile and in wines made from these grapes. The analyses were performed using HPLC/DAD/MS. The accumulation of anthocyanins in the skin and flavan-3-ols in the seed was determined at different stages of ripening of the grape (i.e. green, veraison, middle stage of ripening, and complete ripening). Thirteen anthocyanins were identified in the skin at all stages of ripening, except the green stage. With regard to flavan-3-ols, (+)-catechin, (-)-epicatechin, and (-)-epicatechin gallate were detected in all of the seed samples. The highest (+)-catechin content was found in the seeds of the green grape (2 mg g(-1) DW), whereas in the seeds from the completely ripe grape the content was more than ten times lower. The highest catechin content in the seed was correlated with the lowest anthocyanin content in the skin. The wines produced in the years 2004 and 2005 showed, at wavelengths of 520 and 280 nm, almost identical quali-quantitative chromatographic profiles, with high concentrations of anthocyanin 3-O-glucosides, low concentrations of acylated anthocyanins, and trace amounts of (+)-catechin and (-)-epicatechin.  相似文献   

9.
(1S,2S)-, (1S,2R)-, and (1R,2S)-1-(2,4-Dimethylphenyl)piperazyl-2-phenylcyclopropane (2a, 3, and ent-3, respectively), which were designed as conformationally restricted analogues of haloperidol (1), a clinically effective antipsychotic agent, were synthesized from chiral epichlorohydrins using the Barton reductive radical decarboxylation as the key step. (1S,2R)-1-(tert-Butyldiphenylsilyloxy)methyl-2-carboxy-2-phenylcyclopropane (5), which was prepared from (S)-epichlorohydrin ((S)-7), was converted into its N-hydroxypyridine-2-thione ester 12, the substrate for the reductive radical decarboxylation. When 12 was treated with TMS3SiH in the presence of Et3B or AIBN, the decarboxylation and subsequent hydride attack on the cyclopropyl radical intermediate from the side opposite to the bulky silyloxymethyl moiety occurred, resulting in selective formation of the corresponding reductive decarboxylation product 4-cis with the cis-cyclopropane structure. From 4-cis, the cis-cyclopropane-type target compound 3 was readily synthesized. Starting from (R)-epichlorohydrin ((R)-7), ent-3 was similarly synthesized. Epimerization of the cyclopropanecarboxamide ent-16-cis, a synthetic intermediate for ent-3, on treatment with a base prepared from Bu2Mg and i-Pr2NH in THF occurred effectively to give the corresponding trans isomer 16-trans, which was converted into 2a with the trans-cyclopropane structure.  相似文献   

10.
The cyclopropane ring can be used effectively in restricting the conformation of biologically active compounds to improve activity and also to investigate bioactive conformations. We designed (1S,2R)- and (1R,2R)-2-aminomethyl-1-(1H-imidazol-4-yl)cyclopropanes (1 and 2, respectively) and their enantiomers (ent-1 and ent-2) as conformationally restricted analogues of histamine. The four types of chiral cyclopropanes bearing two differentially functionalized carbon substituents in a cis or trans relationship on a cyclopropane ring, (1S,2R)-2-(tert-butyldiphenylsilyloxy)methyl-1-formylcyclopropane (7) and (1R,2R)-2-(tert-butyldiphenylsilyloxy)methyl-1-formylcyclopropane (8) and their enantiomers (ent-7 and ent-8), were developed as the key intermediates for synthesizing 1, 2, ent-1, and ent-2. The reaction between (R)-epichlorohydrin [(R)-12] and phenylsulfonylacetonitrile (13a) in the presence of NaOEt in EtOH followed by treatment with acid gave the chiral cyclopropane lactone 11a with 98% ee in 82% yield. Compound 11a was converted into both the cis- and trans-chiral cyclopropane units 7 and 8, respectively, via reductive desulfonylation with Mg/MeOH as the key step. The corresponding enantiomers, the cis-substituted ent-7 and the trans-substituted ent-8, were also prepared starting from (S)-epichlorohydrin [(S)-12]. The four conformationally restricted target histamine analogues 1, 2, ent-1, and ent-2 were successfully synthesized from 7, 8, ent-7, and ent-8, respectively. The chiral cyclopropane units 7, 8, ent-7, and ent-8 should be useful as versatile intermediates for synthesizing various compounds having an asymmetric cyclopropane structure.  相似文献   

11.
A conformational analysis has been performed for sixteen dimers of (+)-catechin and/or (?)-epicatechin using molecular mechanics (MM2). Monomer units are linked by 4α-6, 4α-8, 4β-6, and 4β-8 bonds. THe four possible combinations of (+)-catechin and/or(?)-epicatechin are used for each bonding pattern. The objectives are characterization of (1) the two rotational isomers at the bond between the two monomer units and (2) the conformations of the heterocyclic rings. There is a twofold rotation about the bond between monomer units. Differ4ences in the energies at the two minima range from a few tenths of a kcal/mol to several kcal/mol, depending on the dimer Heterocyclic rings occupy a range of conformations that can be described as half chairs with varying degrees of distoration toward C(2) or C(3) sofas. The more frequent distortion is toward the C(2) sofa. Interconversion between most of the heterocyclic ring conformations can be obtained by coordinated motion of C(2) and C(3), over a range of about 40 pm, with respect to the mean plane of the fused aromatic ring system.  相似文献   

12.
Seventeen flavonoids isolated from the extracts of the stem of Entada phaseoloides were investigated for their anticomplement (both classic and alternative pathways) and antimicrobial activities against Gram-positive bacteria (MRSA, MSSA, Standard Enterococcus and Bacillus subtilis), Gram-negative bacteria (Escherichia coli, Pseudomonas aeuroginosa) and the yeast-like pathogenic fungus Candida albicans. The anticomplement studies revealed a dose-dependent activity among isolated quercetin, luteolin, apigenin, galangin, 5,2',5'-trihydroxy-3,7,4'-trimethoxyflavone-2'-O-beta-D-glucoside (+)-3,3',5',5,7-pentahydroflavanone, (+)-dihydrokaempferol, (-)-epicatechin, (+)-catechin, naringenin, and 5,7,3',5'-tetrahydroxyflavanone, and the antimicrobial results indicated that quercetin, 5,7,4'-trihydroxy-3'-methoxyflavonol and galangin produced the inhibitory activities against MRSA, MSSA, and Standard Enterococcus, while luteolin and rhamnocitrin displayed inhibition against only MRSA and MSSA. To the best of our knowledge, this is the first report that describes the anticomplement and antimicrobial activities of the stem of E. phaseoloides.  相似文献   

13.
1-Deoxymannojirimycin (8c) was synthesised from 2-amino-6-bromo-2,6-dideoxy-D-mannono-1,4-lactone (7) by intramolecular direct displacement of the C-6 bromine employing non-aqueous base treatment followed by reduction of the intermediate methyl ester. Likewise, using aqueous base at pH 12, ring closure took place by 5-exo attack on the 5,6-epoxide leading to 2,5-dideoxy-2,5-imino-L-gulonic acid (9b), which was reduced to 2,5-dideoxy-2,5-imino-D-glucitol (9b). The method was further applied to 2-amino-6-bromo-2,6-dideoxy-D-galacto- as well as D-talo-1,4-lactones (14 and 15). However, only the corresponding six-membered ring 1,5-iminuronic acid mimetics, namely (2R,3R,4S,5R)-3,4,5-trihydroxypipecolic acid (2,6-dideoxy-2,6-imino-D-galactonic acid, 16) and (2S,3R,4S,5R)-3,4,5-trihydroxypipecolic acid (2,6-dideoxy-2,6-imino-D-talonic acid, 17), were obtained. The corresponding enantiomers, L-galacto- as well as L-talo-2-amino-6-bromo-2,6-dideoxy-1,4-lactones ent-14 and ent-15, reacted accordingly to give the D-galacto- and L-altro-1,5-iminuronic acid mimetics, (2S,3S,4R,5S)-3,4,5-trihydroxypipecolic acid (2,6-dideoxy-2,6-imino-L-galactonic acid, ent-16) and (2R,3S,4R,5S)-3,4,5-trihydroxypipecolic acids (2,6-dideoxy-2,6-imino-L-talonic acid, ent-17), respectively.  相似文献   

14.
A single-laboratory validation study was performed for an HPLC method to identify and quantify the flavanol enantiomers (+)- and (-)-epicatechin and (+)- and (-)-catechin in cocoa-based ingredients and products. These compounds were eluted isocratically with an ammonium acetate-methanol mobile phase applied to a modified beta-cyclodextrin chiral stationary phase and detected using fluorescence. Spike recovery experiments using appropriate matrix blanks, along with cocoa extract, cocoa powder, and dark chocolate, were used to evaluate accuracy, repeatability, specificity, LOD, LOQ, and linearity of the method as performed by a single analyst on multiple days. In all samples analyzed, (-)-epicatechin was the predominant flavanol and represented 68-91% of the total monomeric flavanols detected. For the cocoa-based products, within-day (intraday) precision for (-)-epicatechin was between 1.46-3.22%, for (+)-catechin between 3.66-6.90%, and for (-)-catechin between 1.69-6.89%; (+)-epicatechin was not detected in these samples. Recoveries for the three sample types investigated ranged from 82.2 to 102.1% at the 50% spiking level, 83.7 to 102.0% at the 100% spiking level, and 80.4 to 101.1% at the 200% spiking level. Based on performance results, this method may be suitable for routine laboratory use in analysis of cocoa-based ingredients and products.  相似文献   

15.
Isolation and identification of metabolites from dihydromyricetin   总被引:1,自引:0,他引:1  
Dihydromyricetin (DHM) is the major bioactive constituent of Rattan Tea, which is the tender stems and leaves of Ampelopsis grossendentata. Seven metabolites (2-8) of DHM (1) were obtained by the chromatographic method. The metabolites 2-5 were obtained from the urine of rats administered orally with DHM; and metabolites 6-8 were detected in the fecal specimens of rats, which were also produced by human intestinal bacteria (HIB) in vitro, and were separated from the cultured media of HIB containing DHM. Their structures were elucidated as 5,7,3',5'-tetrahydroxyflavanonol (2); 5,7,3',5'-tetrahydroxy-4'-methoxyflavanonol (3); 5,7,4',5'-tetrahydroxy-3'-methoxyflavanonol (4); and dihydromyricetin-O-5-beta-D-glucuronide (5); (2R,3S)-5,7,3',4',5'-pentahydroxyflavanonol (6); 3,4,5,7,3',4',5'-hepthydroxyflavan (7) and 5,7,3',4',5'-pentahydroxyflavanone (8) on the basis of UV, NMR and LC-MS/MS data. These seven metabolites were formed through familiar metabolic reactions. Dihydromyricetin-O-5-beta-D-glucuronide (5) is a new compound. The (13)C-NMR data of (2) and (4) are reported for the first time.  相似文献   

16.
Two new aporphine alkaloids: 8-hydroxy-9-methoxy-1,2-methylenedioxyaporphine (1) and 8-hydroxy-3,9-dimethoxy-1,2-methylenedioxyaporphine (2) were isolated from the ethyl acetate extract of Fissistigma poilanei along with five known compounds: oxocrebanine (3), kuafumine (4), (2R,3R)-3',4',5,7-tetrahydroxydihydroflavonol-3-O-α-L-rhamnopyranoside (5), (+)-catechin 3-O-α-L-rhamnopyranoside (6) and quercetine 3,7-dimethoxy-3'-O-α-L-rhamnopyranosyl-(1?→?2)-β-D-glucopyranoside (7). These two new aporphine alkaloids exhibited a moderate cytotoxic activity against four human cancer cell lines (KB, Hep-G2, MCF-7, LU) as well as antimicrobial activity against Lactobacillus fermentum, Enterococcus faecium, Staphylococcus aureus and Bacillus subtillis.  相似文献   

17.
A new norisoprenoid and other compounds from Fuzhuan brick tea   总被引:1,自引:0,他引:1  
Fuzhuan brick tea, a kind of dark tea consumed mainly in the border regions of Southwestern and Northwestern China since the 1860s, is produced from the leaves of Camellia sinensis var. sinensis by microbial fermentation. From this special fermented tea, a new norisoprenoid, 3R,9R-oxido-5-megastigmene, was isolated, together with α-linolenic acid, strictin, isovitexin, astragalin, (+)-catechin, (-)-epicatechin, (-)-epicatechin gallate, (+)-gallocatechin, (-)-epigallocatechin, (-)-epigallocatechin gallate and gallic acid. The structures of the compounds were identified by spectroscopic means. The new compound didn't show any inhibition activity against the tested enteric pathogenic microorganisms at a concentration of 800 μg/mL by the hole plate diffusion method.  相似文献   

18.
The first total synthesis of (+)-hatomarubigin 3 is described. The tetra-O-acetyl diborate promoted Diels-Alder reaction of 5-hydroxy-8-(2',3',4',6'-tetra-O-acetyl-beta-D-glucopyranosyloxy)-1,4-naphthoquinone 8 and (E, 1R*,5R*)-3-(2'-methoxyvinyl)cyclohex-2-enol (+/-)-7 gave a mixture of four cycloadducts from which (1S,3S,6S,6aR,12aR,12bS)-1,8-dihydroxy-6-dimethoxy-1-hydroxy-3-methyl-11-(2',3',4',6'-tetra-O-acetyl-beta-D-glucopyranosyloxy)-1,2,3,4,6,6a,12a,12b-octahydrobenz[a]anthracene-7,12-dione 12 was isolated in 51% yield. Selective methylation and acetylation of 12 gave (1S,3S,6S,6aR,12aR,12bS)-1-acetoxy-6,8-dimethoxy-3-methyl-11-(2,3,4,6-tetra-O-acetyl-alpha-D-glucopyranosyloxy)-1,2,3,4,6,6a,12a,12b-octahydrobenz[a]anthracene-7,12-dione 10a. Sequential aromatization, photooxidation and hydrolysis of the glucosyl unit gave (+)-3 (98% ee) in an 8% overall yield from 8.  相似文献   

19.
Proanthocyanidins, known as condensed tannins or oligomeric flavonoids, exist in many edible plants and show various interesting biological activities. We have developed a simple and versatile method of synthesizing procyanidin oligomers consisting of (−)-epicatechin and (+)-catechin. This method is applicable to the synthesis of various 3-O-substituted oligomers. We report here the stereoselective and length controlled synthesis of [4-8]-condensed (−)-epicatechin series procyanidin oligomers. We described the details of the synthesis of an two tetramers, (−)-epicatechin-(−)-epicatechin-(−)-epicatechin-(−)-epicatechin and (−)-epicatechin-(−)-epicatechin-(−)-epicatechin-(+)-catechin (arecatannin A1), (−)-epicatechin pentamer and two 3,3″,3?-tri-O-galloyl trimers, (−)-epicatechin-(−)-epicatechin-(−)-epicatechin-3,3″,3?-tri-O-gallate and (−)-epicatechin-(−)-epicatechin-(+)-catechin-3,3″,3?-tri-O-gallate with the condensation method using TMSOTf as a catalyst. The ability of DPPH radical scavenging activity and DNA polymerase inhibitory activity of these oligomeric compounds were investigated.  相似文献   

20.
The polyphenols determined are: (+)-catechin, (-)-epicatechin, rutin, quercetin and trans-resveratrol. Suitable conditions of supercritical fluid extraction were established using ethanol as a modifier of the polarity solvent (supercritical carbon dioxide). Final extraction conditions were: 20% v/v ethanol, 60degreesC, 250 bars and flow rate 2 mL/min. Static step time and dynamic step time were established using a selected grape skin sample. The extract was collected in water; the more polar polyphenols ((+)-catechin and (-)-epicatechin) remain in solution but rutin, quercetin and trans-resveratrol precipitate in this medium, thereby the solution of the extracted polyphenols was filtered. (+)-Catechin and (-)-epicatechin were determined in the liquid fraction, while the solid fraction, containing rutin, quercetin and trans-resveratrol, was solved with ethanol/H20 (40:60). HPLC determination was carried out at C18 stationary phase, with ethanol/water/acetic acid as mobile phases and UV-visible diode array detection. Due to the significant differences between the polarity of the polyphenols, two different mobile phases were used. An ethanol/water/acetic acid (5:93:2) mobile phase was used to determine (+)-catechin (280 nm) and (-)-epicatechin (280 nm). On the other hand, rutin (254 nm), quercetin (254 nm) and trans-resveratrol (306 nm) were resolved using ethanol/water/acetic acid (40:58:2) as mobile phase. Instrumental parameters were optimised and analytical parameters obtained. The analytical method was validated and applied to five different varieties of Vitis vinifera from the geographical area of Valencia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号