首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 330 毫秒
1.
This paper presents an investigation on the nonlinear dynamic response of carbon nanotube-reinforced composite (CNTRC) plates resting on elastic foundations in thermal environments. Two configurations, i.e., single-layer CNTRC plate and three-layer plate that is composed of a homogeneous core layer and two CNTRC surface sheets, are considered. The single-walled carbon nanotube (SWCNT) reinforcement is either uniformly distributed (UD) or functionally graded (FG) in the thickness direction. The material properties of FG-CNTRC plates are assumed to be graded in the thickness direction, and are estimated through a micromechanical model. The motion equations are based on a higher-order shear deformation theory with a von Kármán-type of kinematic nonlinearity. The thermal effects are also included and the material properties of CNTRCs are assumed to be temperature-dependent. The equations of motion that includes plate-foundation interaction are solved by a two-step perturbation technique. Two cases of the in-plane boundary conditions are considered. Initial stresses caused by thermal loads or in-plane edge loads are introduced. The effects of material property gradient, the volume fraction distribution, the foundation stiffness, the temperature change, the initial stress, and the core-to-face sheet thickness ratio on the dynamic response of CNTRC plates are discussed in detail through a parametric study.  相似文献   

2.
This paper investigates the small- and large-amplitude vibrations of thermally postbuckled carbon nanotube-reinforced composite (CNTRC) beams resting on elastic foundations. For the CNTRC beams, uniformly distributed (UD) and functionally graded (FG) reinforcements are considered where the temperature-dependent material properties of CNRTC beams are assumed to be graded in the thickness direction and estimated through a micromechanical model. The motion equations are derived based on a higher order shear deformation beam theory with including the beam-foundation interaction. The initial deflection caused by thermal postbuckling is also included. The numerical illustrations concern small- and large-amplitude vibration characteristics of thermally postbuckled CNTRC beams under uniform temperature field. The effects of carbon nanotube (CNT) volume fraction and distribution patterns as well as foundation stiffness on the vibration characteristics of CNTRC beams are examined in detail.  相似文献   

3.
Modeling and nonlinear vibration analysis of graphene-reinforced composite (GRC) laminated beams resting on elastic foundations in thermal environments are presented. The graphene reinforcements are assumed to be aligned and are distributed either uniformly or functionally graded of piece-wise type along the thickness of the beam. The motion equations of the beams are based on a higher-order shear deformation beam theory and von Kármán strain displacement relationships. The beam–foundation interaction and thermal effects are also included. The temperature-dependent material properties of GRCs are estimated through a micromechanical model. A two-step perturbation approach is employed to determine the nonlinear-to-linear frequency ratios of GRC laminated beams. Detailed parametric studies are carried out to investigate the effects of material property gradient, temperature variation, stacking sequence as well as the foundation stiffness on the linear and nonlinear vibration characteristics of the GRC laminated beams.  相似文献   

4.
The nonlinear stability of sandwich cylindrical shells comprising porous functionally graded material(FGM) and carbon nanotube reinforced composite(CNTRC)layers subjected to uniform temperature rise is investigated. Two sandwich models corresponding to CNTRC and FGM face sheets are proposed. Carbon nanotubes(CNTs) in the CNTRC layer are embedded into a matrix according to functionally graded distributions. The effects of porosity in the FGM and the temperature dependence of properties of all constituent materials are considered. The effective properties of the porous FGM and CNTRC are determined by using the modified and extended versions of a linear mixture rule, respectively. The basic equations governing the stability problem of thin sandwich cylindrical shells are established within the framework of the Donnell shell theory including the von K'arm'an-Donnell nonlinearity. These equations are solved by using the multi-term analytical solutions and the Galerkin method for simply supported shells.The critical buckling temperatures and postbuckling paths are determined through an iteration procedure. The study reveals that the sandwich shell model with a CNTRC core layer and relatively thin porous FGM face sheets can have the best capacity of thermal load carrying. In addition, unlike the cases of mechanical loads, porosities have beneficial effects on the nonlinear stability of sandwich shells under the thermal load. It is suggested that an appropriate combination of advantages of FGM and CNTRC can result in optimal efficiency for advanced sandwich structures.  相似文献   

5.
A first known investigation on the geometrically nonlinear large deformation behavior of triangular carbon nanotube (CNT) reinforced functionally graded composite plates under transversely distributed loads is investigated. The analysis is carried out using the element-free IMLS-Ritz method. In this study, the first-order shear deformation theory (FSDT) and von Kármán assumption are employed to account for transverse shear strains, rotary inertia and moderate rotations. A convergence study is conducted by varying the supporting size and number of nodes. The effects of transverse shear deformation, CNT distribution and CNT volume fraction on the nonlinear bending characteristics under different boundary conditions are examined.  相似文献   

6.
Dynamic stability behavior of the shear-flexible composite beams subjected to the nonconservative force is intensively investigated based on the finite element model using the Hermitian beam elements. For this, a formal engineering approach of the mechanics of the laminated composite beam is presented based on kinematic assumptions consistent with the Timoshenko beam theory, and the shear stiffness of the thin-walled composite beam is explicitly derived from the energy equivalence. An extended Hamilton’s principle is employed to evaluate the mass-, elastic stiffness-, geometric stiffness-, damping-, and load correction stiffness matrices. Evaluation procedures for the critical values of divergence and flutter loads of the nonconservative system with and without damping effects are then briefly introduced. In order to verify the validity and the accuracy of this study, the divergence and flutter loads are presented and compared with the results from other references, and the influence of various parameters on the divergence and flutter behavior of the laminated composite beams is newly addressed: (1) variation of the divergence and flutter loads with or without the effects of shear deformation and rotary inertia with respect to the nonconservativeness parameter and the fiber angle change, (2) influence of the internal and external damping on flutter loads whether to consider the shear deformation or not.  相似文献   

7.
The nonlinear equations of motion of planar bending vibration of an inextensible viscoelastic carbon nanotube (CNT)-reinforced cantilevered beam are derived. The viscoelastic model in this analysis is taken to be the Kelvin–Voigt model. The Hamilton principle is employed to derive the nonlinear equations of motion of the cantilever beam vibrations. The nonlinear part of the equations of motion consists of cubic nonlinearity in inertia, damping, and stiffness terms. In order to study the response of the system, the method of multiple scales is applied to the nonlinear equations of motion. The solution of the equations of motion is derived for the case of primary resonance, considering that the beam is vibrating due to a direct excitation. Using the properties of a CNT-reinforced composite beam prototype, the results for the vibrations of the system are theoretically and experimentally obtained and compared.  相似文献   

8.
9.
A new 4-node quadrilateral flat shell element is developed for geometrically nonlinear analyses of thin and moderately thick laminated shell structures. The fiat shell element is constructed by combining a quadrilateral area co- ordinate method (QAC) based membrane element AGQ6- II, and a Timoshenko beam function (TBF) method based shear deformable plate bending element ARS-Q12. In order to model folded plates and connect with beam elements, the drilling stiffness is added to the element stiffness matrix based on the mixed variational principle. The transverse shear rigidity matrix, based on the first-order shear deformation theory (FSDT), for the laminated composite plate is evaluated using the transverse equilibrium conditions, while the shear correction factors are not needed. The conventional TBF methods are also modified to efficiently calculate the element stiffness for laminate. The new shell element is extended to large deflection and post-buckling analyses of isotropic and laminated composite shells based on the element independent corotational formulation. Numerical re- sults show that the present shell element has an excellent numerical performance for the test examples, and is applicable to stiffened plates.  相似文献   

10.
In this paper, the stresses and buckling behaviors of a thick-walled micro sandwich panel with a flexible foam core and carbon nanotube reinforced composite(CNTRC) face sheets are considered based on the high-order shear deformation theory(HSDT) and the modified couple stress theory(MCST). The governing equations of equilibrium are obtained based on the total potential energy principle. The effects of various parameters such as the aspect ratio, elastic foundation, temperature changes, and volume fraction of the canbon nanotubes(CNTs) on the critical buckling loads, normal stress,shear stress, and deflection of the thick-walled micro cylindrical sandwich panel considering different distributions of CNTs are examined. The results are compared and validated with other studies, and showing an excellent compatibility. CNTs have become very useful and common candidates in sandwich structures, and they have been extensively used in many applications including nanotechnology, aerospace, and micro-structures. This paper also extends further applications of reinforced sandwich panels by providing the modified equations and formulae.  相似文献   

11.
SMA纤维混杂层合梁的材料阻尼   总被引:2,自引:1,他引:1  
研究一类由形状记忆合金(SMA)和普通纤维混杂而成的层合梁的阻尼特性,基于最大应变能理论提出SAM混杂层合梁的等效材料阻尼预测的数学模型,其中,单层材料的弹性性能和阻尼性能分别采用多胞模型及其阻尼细观力学分析模型确定,利用正交各向异性层合梁的铁木辛柯理论分析梁的变形,通过数值算例分析了SMA含量,纤维铺设角对梁的等效阻尼比的影响。  相似文献   

12.
基于复合材料层合板一阶剪切理论,推导了复合材料层合板单元的刚度阵和质量阵列式;同时采用了Adams应交能法与Rayleigh阻尼模型相结合的方法,构造了相应的阻尼阵列式;为了防止在低阶模态中分层处出现的上、下子板不合理的嵌入现象,建立了含分层损伤复合材料加筋层合板动力分析的分层分析模型和虚拟界面联接模型。在上述模型和理论基础上,采用了Tsai提出的刚度退化准则和动力响应分析的精细积分法,对含分层损伤复合材料加筋层合板结构进行了动力响应和破坏分析。通过算例,分别讨论了外载频率、分层位置,以及破坏过程的刚度退化对含损伤复合材料加筋层合板动力响应特征的影响,得到了一些具有理论和工程价值的结论。  相似文献   

13.
复合材料层合板壳非线性力学的研究进展   总被引:4,自引:0,他引:4  
复合材料层合板壳是由多种组分材料组合而成.与单一材料的板壳结构相比,它无明确的材料主方向,各层间材料间断和不连续,具有明显的几何非线性和材料非线性等新的特点.其失效模式也远比单一材料的情况复杂,具有如基体开裂、脱胶、分层、分层裂纹偏转、多分层以及分层传播等多种模式.各国学者基于不同的考虑,提出了多种方法研究复合材料层合板壳的失效.首先,在简要介绍了层合板壳线性力学基本理论的基础上,重点回顾了层合板壳结构非线性力学几种基本理论发展的过程,主要阐述了经典大挠度非线性理论、一阶剪切变形理论、高阶剪切变形理论、锯齿理论、广义分层理论的理论体系及基本公式,并对几种理论之间的联系和差异进行了总结;其次,介绍了当前层合结构非线性领域的研究进展,综述了典型复合材料板壳结构的失效机理及优化设计、复合材料板壳结构在复杂环境下的破坏机理、复合材料板壳结构的物理非线性、含脱层纤维增强复合材料板壳结构的破坏机理等各研究热点的最新研究成果;最后,对该领域未来的研究方向进行了展望.  相似文献   

14.
The aim of this study is to investigate the dynamic response of axially moving two-layer laminated plates on the Winkler and Pasternak foundations. The upper and lower layers are formed from a bidirectional functionally graded(FG) layer and a graphene platelet(GPL) reinforced porous layer, respectively. Henceforth, the combined layers will be referred to as a two-dimensional(2D) FG/GPL plate. Two types of porosity and three graphene dispersion patterns, each of which is distributed through the plate thickness,are investigated. The mechanical properties of the closed-cell layers are used to define the variation of Poisson's ratio and the relationship between the porosity coefficients and the mass density. For the GPL reinforced layer, the effective Young's modulus is derived with the Halpin-Tsai micro-system model, and the rule of mixtures is used to calculate the effective mass density and Poisson's ratio. The material of the upper 2D-FG layer is graded in two directions, and its effective mechanical properties are also derived with the rule of mixtures. The dynamic governing equations are derived with a first-order shear deformation theory(FSDT) and the von Kármán nonlinear theory. A combination of the dynamic relaxation(DR) and Newmark's direct integration methods is used to solve the governing equations in both time and space. A parametric study is carried out to explore the effects of the porosity coefficients, porosity and GPL distributions, material gradients, damping ratios, boundary conditions, and elastic foundation stiffnesses on the plate response. It is shown that both the distributions of the porosity and graphene nanofillers significantly affect the dynamic behaviors of the plates. It is also shown that the reduction in the dynamic deflection of the bilayer composite plates is maximized when the porosity and GPL distributions are symmetric.  相似文献   

15.
剪切流作用下层合梁非线性振动特性研究   总被引:1,自引:1,他引:0  
刘昊  瞿叶高  孟光 《力学学报》2022,54(6):1669-1679
针对剪切流中层合梁的大变形非线性振动问题, 采用高阶剪切变形锯齿理论和冯·卡门应变描述层合梁的变形模式和几何非线性效应, 构建了大变形层合梁非线性振动有限元数值模型; 采用基于任意拉格朗日?欧拉方法的有限体积法求解不可压缩黏性流体纳维-斯托克斯方程, 结合层合梁和流体的耦合界面条件建立了剪切流作用下层合梁流固耦合非线性动力学数值模型, 采用分区并行强耦合方法对层合梁的流致非线性振动响应进行了迭代计算. 研究了不同速度分布的剪切流作用下单层梁和多层复合材料梁的振动响应特性, 并验证了本文数值建模方法的有效性. 结果表明: 剪切流作用下单层梁的振动特性与均匀流作用下的情况不同, 梁的运动轨迹受剪切流影响向下偏斜, 随着速度分布系数增加, 尾部流场中的涡结构发生改变; 刚度比对剪切流作用下层合梁的振动特性有显著影响, 随着刚度比的增加, 层合梁振动的振幅增大, 主导频率下降, 运动轨迹由‘8’字形逐渐变得不对称; 发现了不同厚度比和铺层角度情况下, 层合梁存在定点稳定模式、周期极限环振动模式和非周期振动模式三种不同的振动模式, 改变层合梁铺层角度可实现层合梁周期极限环振动模式向非周期振动模式转变.   相似文献   

16.
本文首次从解析角度建立了低速冲击激励下嵌入黏弹性阻尼芯层的纤维金属混杂层合板动态响应预测模型. 首先,结合经典层合板理论和冯$\cdot$卡门假设,建立了嵌入黏弹性芯层的纤维金属混杂层合板弹性损伤本构关系. 然后,将层合板受冲击时的变形分成接触和拉伸两个区域,在接触区域内,对金属层采用 Von Mises 失效准则,纤维层采用 Tsai-Hill 失效准则和对黏弹性层采用指数 Drucker-Prager 失效准则判断层合板损伤情况. 考虑不同材料层对冲击动态响应的贡献来修正两个变形区域的位移公式,进而计算结构因弹性变形产生的应变能,以及接触区域因塑性变形消耗的能量,实现每次失效事件发生后各层材料的能量、位移和冲击接触力的理论求解,并给出了结构动态响应分析的具体流程图. 最后,以嵌入 Zn33 黏弹性芯层的 TA2 钛合金混杂 T300 碳纤维/树脂层合板为研究对象,开展落锤冲击实验. 验证结果表明,理论预测与测试获得的冲击接触力、位移响应以及冲击载荷-位移曲线吻合较好,且关注的峰值点计算误差最大不超过 9%,进而验证了所提出的理论模型的有效性.   相似文献   

17.
The vibration suppression analysis of a simply-supported laminated composite beam with magnetostrictive layers resting on visco-Pasternak's foundation is presented.The constant gain distributed controller of the velocity feedback is utilized for the purpose of vibration damping.The formulation of displacement field is proposed according to Euler-Bernoulli's classical beam theory(ECBT),Timoshenko's first-order beam theory(TFBT),Reddy's third-order shear deformation beam theory,and the simple sinusoidal shear deformation beam theory.Hamilton's principle is utilized to give the equations of motion and then to describe the vibration of the current beam.Based on Navier's approach,the solution of the dynamic system is obtained.The effects of the material properties,the modes,the thickness ratios,the lamination schemes,the magnitudes of the feedback coefficient,the position of magnetostrictive layers at the structure,and the foundation modules are extensively studied and discussed.  相似文献   

18.
Considering mass and stiffness of piezoelectric layers and damage effects of composite layers, nonlinear dynamic equations of damaged piezoelectric smart laminated plates are derived. The derivation is based on the Hamilton's principle, the higher- order shear deformation plate theory, von Karman type geometrically nonlinear straindisplacement relations, and the strain energy equivalence theory. A negative velocity feedback control algorithm coupling the direct and converse piezoelectric effects is used to realize the active control and damage detection with a closed control loop. Simply supported rectangular laminated plates with immovable edges are used in numerical computation. Influence of the piezoelectric layers' location on the vibration control is in- vestigated. In addition, effects of the degree and location of damage on the sensor output voltage are discussed. A method for damage detection is introduced.  相似文献   

19.
本文首次从解析角度建立了低速冲击激励下嵌入黏弹性阻尼芯层的纤维金属混杂层合板动态响应预测模型. 首先,结合经典层合板理论和冯$\cdot$卡门假设,建立了嵌入黏弹性芯层的纤维金属混杂层合板弹性损伤本构关系. 然后,将层合板受冲击时的变形分成接触和拉伸两个区域,在接触区域内,对金属层采用 Von Mises 失效准则,纤维层采用 Tsai-Hill 失效准则和对黏弹性层采用指数 Drucker-Prager 失效准则判断层合板损伤情况. 考虑不同材料层对冲击动态响应的贡献来修正两个变形区域的位移公式,进而计算结构因弹性变形产生的应变能,以及接触区域因塑性变形消耗的能量,实现每次失效事件发生后各层材料的能量、位移和冲击接触力的理论求解,并给出了结构动态响应分析的具体流程图. 最后,以嵌入 Zn33 黏弹性芯层的 TA2 钛合金混杂 T300 碳纤维/树脂层合板为研究对象,开展落锤冲击实验. 验证结果表明,理论预测与测试获得的冲击接触力、位移响应以及冲击载荷-位移曲线吻合较好,且关注的峰值点计算误差最大不超过 9%,进而验证了所提出的理论模型的有效性.  相似文献   

20.
Abstract

In the present study, the high-order free vibration analysis of rotating fully-bonded and delaminated sandwich beams; with and without vertical contact; containing AL-foam flexible core and carbon nanotubes reinforced composite (CNTRC) face sheets subjected to thermal and moisture field are investigated by using generalized differential quadrature method (GDQM). The compressible core and face sheets of sandwich beam, respectively, are composed of Aluminum alloy foam with variable mechanical properties in the thickness direction and CNTRC with temperature dependent material properties. In this study, the high-order sandwich panel theory (HSAPT) for AL-foam flexible core and Euler-Bernoulli beam theory for CNTRC face sheets are considered. By employing Hamilton’s principle, the governing partial differential equations of motion and associated boundary and continuity conditions for various types of regions (fully-bonded, delaminated with contact, delaminated without contact) are derived and then discretized by using GDQM. The final formulations lead to 14 partial differential equations for the entire structure including five equations for fully-bonded two-headed parts of AL-foam cored sandwich beam (AL-FCSB) and four equations for delaminated middle part of AL-FCSB beam which are combined in axial and transverse deformations. A parametric study is performed to investigate the influence of some important parameters such as existence of delaminated region, type of delaminated region (with or without contact), longitudinal position of delaminated region, slenderness ratio, face sheet thickness ratio, CNT volume fraction, temperature rise, moisture concentration, rotating speed, and hub radius. The obtained results reveal that the 1st frequency of delaminated AL-FCSB beam, whether with or without vertical contact, is less remarkably than ones of fully-bonded AL-FCSB beam which its value for the case of delaminated ‘with contact’ is larger than that of ‘without contact’. Moreover, the 1st frequency variation of the delaminated AL-FCSB beam is symmetrical with regard to the longitudinal position of the debonded region such that the 1st natural frequency declines with moving the debonded region toward the center of the beam. The study of vibration behavior of rotating sandwich beams is very important in design of rotating structural systems, specially damaged ones, such as airplanes, helicopter rotor blades, and robot arms. One of the most important types of damage encountered in mentioned cases is the decomposition of two layers or delamination. Working these rotating structures in the media, are always along with variations of temperature and humidity and hence their mechanical properties may be changed due to the environment conditions.

Communicated by S. Velinsky  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号