首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
This study presents a phenomenological constitutive model for describing response of solid-like viscoelastic polymers undergoing degradation. The model is expressed in terms of recoverable and irrecoverable time-dependent parts. We use a time-integral function with a nonlinear integrand for the recoverable part and another time-integral function is used for the irrecoverable part, which is associated with the degradation evolution in the materials. Here, the degradation is attributed to the secondary and tertiary creep stages. An ‘internal clock’ concept in viscoelastic materials is used to incorporate the accelerated failure in the materials at high stress levels. We ignore the effect of heat generation due to the dissipation of energy and possible healing in predicting the long-term and failure response of the polymeric materials. Experimental data on polymer composites reported by Drozdov (2011) were used to characterize the material parameters and validate the constitutive model. The model is shown capable of predicting response of the polymer composites under various loading histories: creep, relaxation, ramp loading with a constant rate, and cyclic loadings. We observed that the failure time and number of cycles to failure during cyclic loadings are correlated to the duration of loading and magnitude of the prescribed mechanical loads. A scalar degradation variable is also introduced in order to determine the severity of the degradation in the materials, which is useful to predict the lifetime of the structures subject to various loading histories during the structural design stage.  相似文献   

2.
This work proposes a model for granular deformation that predicts the stress and velocity profiles in well-developed dense granular flows. Recent models for granular elasticity [Jiang, Y., Liu, M., 2003. Granular elasticity without the Coulomb condition. Phys. Rev. Lett. 91, 144301] and rate-sensitive fluid-like flow [Jop, P., Forterre, Y., Pouliquen, O., 2006. A constitutive law for dense granular flows. Nature 441, 727] are reformulated and combined into one universal elasto-plastic law, capable of predicting flowing regions and stagnant zones simultaneously in any arbitrary 3D flow geometry. The unification is performed by justifying and implementing a Kröner–Lee decomposition, with care taken to ensure certain continuum physical principles are necessarily upheld. The model is then numerically implemented in multiple geometries and results are compared to experiments and discrete simulations.  相似文献   

3.
4.
In this paper, two different nonlinear models for Artemia swarming are derived. In order to generate the data suitable for identification, a robot driving the Artemia population has been built. The obtained data have been then used to identify the parameters of a model based on Newton??s equations and a black-box NARX model implemented by neural networks. The performances obtained validate the physical hypotheses underlying the gray-box model.  相似文献   

5.
Tyre behaviour is strongly nonlinear. This article presents the validation of a new polynomial tyre model with real test data, analysing the convergence properties during the optimization process to calculate the values of the parameters. A multivariate model with 13 parameters is shown, including normal load and camber angle. The article reviews the methods of getting polynomial approximations of the magic formula tyre model used to develop the new polynomial model, the numerical optimization methods which calculate the parameters of the model from real test data, and it explains how the terms of the Jacobian matrix are modified when we impose constraints to the curve; this can be useful to improve the adjustment in some areas of the curve. The convergence properties are shown both for the magic formula tyre model and for this polynomial tyre model. The proposed model presents a fast convergence both in one and in three variables. This is an additional advantage to its excellent analytical properties, and the model is very easy to compute and can be easily derived and integrated. It is very well adapted for real-time computing.  相似文献   

6.
Nonlinear stability analysis of a disk brake model   总被引:1,自引:0,他引:1  
It has become commonly accepted by scientists and engineers that brake squeal is generated by friction-induced self-excited vibrations of the brake system. The noise-free configuration of the brake system loses stability through a flutter-type instability and the system starts oscillating in a limit cycle. Usually, the stability analysis of disk brake models, both analytical as well as finite element based, investigates the linearized models, i.e. the eigenvalues of the linearized equations of motion. However, there are experimentally observed effects not covered by these analyses, even though the full nonlinear models include these effects in principle. The present paper describes the nonlinear stability analysis of a realistic disk brake model with 12 degrees of freedom. Using center manifold theory and artificially increasing the degree of degeneracy of the occurring bifurcation, an analytical expression for the turning points in the bifurcation diagram of the subcritical Hopf bifurcations is calculated. The parameter combination corresponding to the turning points is considered as the practical stability boundary of the system. Basic phenomena known from the operating experience of brake systems tending to squeal problems can be explained on the basis of the practical stability boundary.  相似文献   

7.
Constitutive equations for class of materials that possess granular microstructure can be effectively derived using granular micromechanics approach. The stress–strain behavior of such materials depends upon the underlying grain scale mechanisms that are modeled by using appropriate rate-dependent inter-granular force–displacement relationships. These force–displacement functions are nonlinear and implicit evolutions equations. The numerical solution of such equation under applied overall stress or strain loading can entail significant computational expense. To address the computations issue, an efficient explicit time-integration scheme has been derived. The developed model is then utilized to predict primary, secondary and tertiary creep as well as rate-dependent response under tensile and compressive loads for hot mix asphalt. Further, the capability of the derived model to describe multi-axial behavior is demonstrated through generations of biaxial time-to-creep failure envelopes and rate-dependent failure envelopes under monotonic biaxial and triaxial loading. The advantage of the approach presented here is that we can predict the multi-axial effects without resorting to complex phenomenological modeling.  相似文献   

8.
In this paper, the effects of structural nonlinearity due to free-play in both leading-edge and trailing-edge outboard control surfaces on the linear flutter control system are analyzed for an aeroelastic model of three-dimensional multiple-actuated-wing. The free-play nonlinearities in the control surfaces are modeled theoretically by using the fictitious mass approach. The nonlinear aeroelastic equations of the presented model can be divided into nine sub-linear modal-based aeroelastic equations according to the different combinations of deflections of the leading-edge and trailing-edge outboard control surfaces. The nonlinear aeroelastic responses can be computed based on these sub-linear aeroelastic systems. To demonstrate the effects of nonlinearity on the linear flutter control system, a single-input and single-output controller and a multi-input and multi-output controller are designed based on the unconstrained optimization techniques. The numerical results indicate that the free-play nonlinearity can lead to either limit cycle oscillations or divergent motions when the linear control system is implemented.  相似文献   

9.
The dynamic behavior of the simplest possible cable net is studied in this paper, consisting of two crossing cables in perpendicular vertical planes, having the same span and opposite sags. A concentrated mass is attached at the central node, and only the vertical translational degree of freedom is assumed as active. First, the static behavior is explored up to the load level that causes tensile cable failure. Then, the dynamic response is investigated for different resonant conditions and is found to give significantly larger amplitudes with respect to the static ones, even for loading frequencies away from the eigenfrequency of the system. In order to derive analytical solutions, the equation of motion is simplified and the cable net is proved to be a Duffing oscillator. For the simplified problem, the occurrence of nonlinear phenomena is verified analytically, such as bending of the response curve, jump phenomena, instability regions, dependence on the initial conditions, and superharmonic and subharmonic resonances. These phenomena are also detected by means of numerical analyses. A comparison between the exact model and the simplified one shows that the analytical solution of the Duffing equation describes the dynamic behavior of the cable net with satisfactory accuracy.  相似文献   

10.
11.
12.
13.
A simple nonlinear buckling analysis is applied to a one-degree-of-freedom arch under impact loading in which viscous damping may also be included. Such a loading consists of a falling body striking centrally the joint mass of the arch in such a way that a completely plastic impact can be postulated. When there is no damping the exact dynamic buckling load for such a kind of loading-associated with an unbounded motion can be established by using a static criterion (approach). More specifically, it was shown that the dynamic buckling load corresponds to that unstable equilibrium state where the total potential energy of the system is zero. Furthermore, it was proved that the second variation of the total potential energy at the foregoing unstable equilibrium state is negative definite. This implies that the curve loading versus displacement resulting by the vanishing of the total potential energy has always a maximum on the afore mentioned unstable state. It was also found that the system may become sensitive to initial conditions. If damping is included the foregoing static criterion yields lower bound buckling estimates. These findings were verified by employing a highly efficient approximate technique as well as the numerical scheme of Runge-Kutta for solving any nonlinear initial-value problem.  相似文献   

14.
We study the stress growth upon the inception of steady shear and steady elongational flow for a nonlinear dumbbell model for flexible macromolecules suspended in a Newtonian fluid. The internal force law is made nonlinear by adding a cubic term to the Hookean force law. The generalization to a nonlinear chainlike bead—spring model is outlined. In order to consider higher concentration effects also the configuration-dependent tensorial mobility is included. We use the mean-field approximation and test this approximation with a Brownian dynamics simulation. The mean-field results for the material functions are compared with experimental results for both flow situations.  相似文献   

15.
The aim of this paper is to propose a possible mathematical model of site effects that occur when seismic waves propagate through a sediment filled basin. The model is based on the mechanical properties of the medium (that we consider as a granular material) through which the seismic waves propagate. By looking for asymptotic solutions having the features of a progressive wave, we derive an evolution equation which is a modified Korteweg–deVries–Burgers equation containing also a nonlinear dissipative term. This equation is integrated numerically and the modelled site amplification is evaluated by using the smoothed spectral ratio between the propagated profile of the wave and the initial one.  相似文献   

16.
Epilepsy is a dynamical disorder with intermittent crises (seizures) that until recently were considered unpredictable. In this study, we investigated the predictability of epileptic seizures in chronically epileptic rats as a first step towards a subsequent timely intervention for seizure control. We look at the epileptic brain as a nonlinear complex system that undergoes spatio-temporal state transitions and the Lyapunov exponents as indices of its stability. We estimated the spatial synchronization or desynchronization of the maximum short-term Lyapunov exponents (STLmax, approximate measures of chaos) among multiple brain sites over days of electroencephalographic (EEG) recordings from 5 rats that had developed chronic epilepsy according to the lithium pilocarpine rodent model of epilepsy. We utilized this synchronization of EEG dynamics for the construction of a robust seizure prediction algorithm. The parameters of the algorithm were optimized using receiver operator curves (ROCs) on training EEG datasets from each rat for the algorithm to provide maximum sensitivity and specificity in the prediction of their seizures. The performance of the algorithm was then tested on long-term testing EEG datasets per rat. The thus optimized prediction algorithm on the testing datasets over all rats yielded a seizure prediction mean sensitivity of 85.9%, specificity of 0.180 false predictions per hour, and prediction time of 67.6 minutes prior to a seizure onset. This study provides evidence that prediction of seizures is feasible through analysis of the EEG within the framework of nonlinear dynamics, and thus paves the way for just-in-time pharmacological or physiological inter-ventions to abort seizures tens of minutes before their occurrence.  相似文献   

17.
Zhu  Yun-Peng  Lang  Z. Q.  Guo  Yu-Zhu 《Nonlinear dynamics》2021,104(3):2553-2571
Nonlinear Dynamics - In engineering practice, a nonlinear system stable about several equilibria is often studied by linearizing the system over a small range of operation around each of these...  相似文献   

18.
A model kinetic equation approximating the Boltzmann equation on a wide range of the intensities of nonequilibrium states of gases is derived to describe rarefied gas flows. The kinetic model is based on a distribution function dependent on the absolute velocity of gas particles. Themodel kinetic equation possesses a high computational efficiency and the problem of shock wave structure is solved on its basis. The calculated and experimental data for argon are compared.  相似文献   

19.
Nonlinear k– models have been extensively used in technological applications. It is clear from the assessment of the existing nonlinear k– models using DNS databases that the nonlinear models can not satisfy and reproduce exactly the wall-limiting behavior and the anisotropy of Reynolds normal stress components. Especially, the Reynolds normal stress component, , in the wall-normal direction, which is proportional to x24 near the wall, is not satisfied. Since the wall-limiting behavior of Reynolds normal stress components in the nonlinear model is determined by the turbulence energy k, which is proportional to x22 in the model, the Reynolds stress components, , and , are proportional to x22. In this study, we have proposed a new nonlinear k– model which satisfies exactly the wall-limiting behavior of Reynolds normal stress components in the inertial and the noninertial frames. The proposed model can also predict well the anisotropy of the Reynolds normal stress components near the wall. PACS 47.27.Eq, 47.27.Ak, 47.27.Nz  相似文献   

20.
熊辉 《计算力学学报》2016,33(5):689-696
提出一种群桩-土弹塑性模型,结合动力文克尔理论,推导出了与桩(筏)-土属性及SSI体系频率相关的各项弹簧-阻尼单元动力阻抗,建立了三维框架土-结构相互作用有限元简化分析模型。针对不同地震激励,在不同桩-土条件下对模型进行了动力非线性时程分析,结果表明,在某些地震动和土-基础条件下,上部结构非线性作用效应结果可能大于固基假定情形,且桩-土弹塑性模型对上部结构柔弱层位置产生影响。应用本文简化方法可以快速、较准确有效地进行复杂的上下部结构动力时程分析及抗震评估。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号