首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It is shown that control of the Schrödinger maximal function sup0 <t<1 ?eitΔf? for fHs(Rn) requires sn/2(n + 1).  相似文献   

2.
Let O ? R d be a bounded domain of class C 1,1. Let 0 < ε - 1. In L 2(O;C n ) we consider a positive definite strongly elliptic second-order operator B D,ε with Dirichlet boundary condition. Its coefficients are periodic and depend on x/ε. The principal part of the operator is given in factorized form, and the operator has lower order terms. We study the behavior of the generalized resolvent (B D,ε ? ζQ 0(·/ε))?1 as ε → 0. Here the matrix-valued function Q 0 is periodic, bounded, and positive definite; ζ is a complex-valued parameter. We find approximations of the generalized resolvent in the L 2(O;C n )-operator norm and in the norm of operators acting from L 2(O;C n ) to the Sobolev space H 1(O;C n ) with two-parameter error estimates (depending on ε and ζ). Approximations of the generalized resolvent are applied to the homogenization of the solution of the first initial-boundary value problem for the parabolic equation Q 0(x/ε)? t v ε (x, t) = ?(B D,ε v ε )(x, t).  相似文献   

3.
Let {p n (t)} n=0 t8 be a system of algebraic polynomials orthonormal on the segment [?1, 1] with a weight p(t); let {x n,ν (p) } ν=1 n be zeros of a polynomial p n (t) (x x,ν (p) = cosθ n,ν (p) ; 0 < θ n,1 (p) < θ n,2 (p) < ... < θ n,n (p) < π). It is known that, for a wide class of weights p(t) containing the Jacobi weight, the quantities θ n,1 (p) and 1 ? x n,1 (p) coincide in order with n ?1 and n ?2, respectively. In the present paper, we prove that, if the weight p(t) has the form p(t) = 4(1 ? t 2)?1{ln2[(1 + t)/(1 ? t)] + π 2}?1, then the following asymptotic formulas are valid as n → ∞:
$$\theta _{n,1}^{(p)} = \frac{{\sqrt 2 }}{{n\sqrt {\ln (n + 1)} }}\left[ {1 + {\rm O}\left( {\frac{1}{{\ln (n + 1)}}} \right)} \right],x_{n,1}^{(p)} = 1 - \left( {\frac{1}{{n^2 \ln (n + 1)}}} \right) + O\left( {\frac{1}{{n^2 \ln ^2 (n + 1)}}} \right).$$
  相似文献   

4.
We investigate the nonlinear Schrödinger equation iu t u+|u| p?1 u = 0with 1+ 4/N < p < 1+ 4/N?2 (when N = 1, 2, 1 + 4/N < p < ∞) in energy space H 1 and study the divergent property of infinite-variance and nonradial solutions. If \(M{\left( u \right)^{\frac{{1 - {s_C}}}{{{s_C}}}}}E\left( u \right) \prec M{\left( Q \right)^{\frac{{1 - {s_C}}}{{{s_C}}}}}E\left( Q \right)\) and \(\left\| {{u_0}} \right\|_2^{\frac{{1 - {s_c}}}{{{s_c}}}}\left\| {\nabla {u_0}} \right\|_2^{\frac{{1 - {s_c}}}{{{s_c}}}}{\left\| {\nabla Q} \right\|_2}\), then either u(t) blows up in finite forward time or u(t) exists globally for positive time and there exists a time sequence t n → +∞ such that \({\left\| {\nabla u\left( {{t_n}} \right)} \right\|_2} \to + \infty \). Here Q is the ground state solution of ?(1?s c )QQ+Q p?1 Q = 0. A similar result holds for negative time. This extend the result of the 3D cubic Schrödinger equation obtained by Holmer to the general mass-supercritical and energy-subcritical case.  相似文献   

5.
For yx 4/5 L 8B+151 (where L = log(xq) and B is an absolute constant), a nontrivial estimate is obtained for short cubic exponential sums over primes of the form S 3(α; x, y) = ∑ x?y<nx Λ(n)e(αn 3), where α = a/q + θ/q 2, (a, q) = 1, L 32(B+20) < qy 5 x ?2 L ?32(B+20), |θ| ≤ 1, Λ is the von Mangoldt function, and e(t) = e 2πit.  相似文献   

6.
Let ξ(t) be a zero-mean stationary Gaussian process with the covariance function r(t) of Pickands type, i.e., r(t) = 1 ? |t| α + o(|t| α ), t → 0, 0 < α ≤ 2, and η(t), ζ(t) be periodic random processes. The exact asymptotic behavior of the probabilities P(max t∈[0,T] η(t)ξ(t) > u), P(max t∈[0,T] (ξ(t) + η(t)) > u) and P(max t∈[0,T] (η(t)ξ(t) + ζ(t)) > u) is obtained for u → ∞ for any T > 0 and independent ξ(t), η(t), ζ(t).  相似文献   

7.
Let N 0(T) be the number of zeros of the Davenport–Heilbronn function in the interval [1/2, 1/2+ i T]. It is proved that N 0(T) ? T (ln T)1/2+1/16?ε, where ε is an arbitrarily small positive number.  相似文献   

8.
We consider the quasilinear Schrödinger equations of the form ?ε2Δu + V(x)u ? ε2Δ(u2)u = g(u), x∈ RN, where ε > 0 is a small parameter, the nonlinearity g(u) ∈ C1(R) is an odd function with subcritical growth and V(x) is a positive Hölder continuous function which is bounded from below, away from zero, and infΛV(x) < inf?ΛV(x) for some open bounded subset Λ of RN. We prove that there is an ε0 > 0 such that for all ε ∈ (0, ε0], the above mentioned problem possesses a sign-changing solution uε which exhibits concentration profile around the local minimum point of V(x) as ε → 0+.  相似文献   

9.
In this paper a class of correlated cumulative processes, B s (t) = ∑N(t)i=1 H s (X i )X i , is studied with excess level increments X i ?s, where {N(t), t ?0} is the counting process generated by the renewal sequence T n , T n and X n are correlated for given n, H s (t) is the Heaviside function and s?0 is a given constant. Several useful results, for the distributions of B s (t), and that of the number of excess (non-excess) increments on (0, t) and the corresponding means, are derived. First passage time problems are also discussed and various asymptotic properties of the processes are obtained. Transform results, by applying a flexible form for the joint distribution of correlated pairs (T n , X n ) are derived and inverted. The case of non-excess level increments, X i < s, is also considered. Finally, applications to known stochastic shock and pro-rata warranty models are given.  相似文献   

10.
Let X 1,..., X n, n > 1, be nondegenerate independent chronologically ordered realvalued observables with finite means. Consider the “no-change in the mean” null hypothesis H 0: X 1,..., X n is a randomsample on X with Var X <∞. We revisit the problem of nonparametric testing for H 0 versus the “at most one change (AMOC) in the mean” alternative hypothesis H A: there is an integer k*, 1 ≤ k* < n, such that EX 1 = · · · = EXk* ≠ EXk*+1 = ··· = EX n. A natural way of testing for H 0 versus H A is via comparing the sample mean of the first k observables to the sample mean of the last n - k observables, for all possible times k of AMOC in the mean, 1 ≤ k < n. In particular, a number of such tests in the literature are based on test statistics that are maximums in k of the appropriately individually normalized absolute deviations Δk = |S k/k - (S n - S k)/(n - k)|, where S k:= X 1 + ··· + X k. Asymptotic distributions of these test statistics under H 0 as n → ∞ are obtained via establishing convergence in distribution of supfunctionals of respectively weighted |Z n(t)|, where {Z n(t), 0 ≤ t ≤ 1}n≥1 are the tied-down partial sums processes such that
$${Z_n}\left( t \right): = \left( {{S_{\left\lceil {\left( {n + 1} \right)t} \right\rceil }} - \left[ {\left( {n + 1} \right)t} \right]{S_n}/n} \right)/\sqrt n $$
if 0 ≤ t < 1, and Z n(t):= 0 if t = 1. In the present paper, we propose an alternative route to nonparametric testing for H 0 versus H A via sup-functionals of appropriately weighted |Z n(t)|. Simply considering max1?k<n Δk as a prototype test statistic leads us to establishing convergence in distribution of special sup-functionals of |Z n(t)|/(t(1 - t)) under H 0 and assuming also that E|X|r < ∞ for some r > 2. We believe the weight function t(1 - t) for sup-functionals of |Z n(t)| has not been considered before.
  相似文献   

11.
We consider a fractional Adams method for solving the nonlinear fractional differential equation \(\,^{C}_{0}D^{\alpha }_{t} y(t) = f(t, y(t)), \, \alpha >0\), equipped with the initial conditions \(y^{(k)} (0) = y_{0}^{(k)}, k=0, 1, \dots , \lceil \alpha \rceil -1\). Here, α may be an arbitrary positive number and ?α? denotes the smallest integer no less than α and the differential operator is the Caputo derivative. Under the assumption \(\,^{C}_{0}D^{\alpha }_{t} y \in C^{2}[0, T]\), Diethelm et al. (Numer. Algor. 36, 31–52, 2004) introduced a fractional Adams method with the uniform meshes t n = T(n/N),n = 0,1,2,…,N and proved that this method has the optimal convergence order uniformly in t n , that is O(N ?2) if α > 1 and O(N ?1?α ) if α ≤ 1. They also showed that if \(\,^{C}_{0}D^{\alpha }_{t} y(t) \notin C^{2}[0, T]\), the optimal convergence order of this method cannot be obtained with the uniform meshes. However, it is well-known that for yC m [0,T] for some \(m \in \mathbb {N}\) and 0 < α < m, the Caputo fractional derivative \(\,^{C}_{0}D^{\alpha }_{t} y(t) \) takes the form “\(\,^{C}_{0}D^{\alpha }_{t} y(t) = c t^{\lceil \alpha \rceil -\alpha } + \text {smoother terms}\)” (Diethelm et al. Numer. Algor. 36, 31–52, 2004), which implies that \(\,^{C}_{0}D^{\alpha }_{t} y \) behaves as t ?α??α which is not in C 2[0,T]. By using the graded meshes t n = T(n/N) r ,n = 0,1,2,…,N with some suitable r > 1, we show that the optimal convergence order of this method can be recovered uniformly in t n even if \(\,^{C}_{0}D^{\alpha }_{t} y\) behaves as t σ ,0 < σ < 1. Numerical examples are given to show that the numerical results are consistent with the theoretical results.  相似文献   

12.
Let φ be an N-function. Then the normal structure coefficients N and the weakly convergent sequence coefficients WCS of the Orlicz function spaces L φ[0, 1] generated by φ and equipped with the Luxemburg and Orlicz norms have the following exact values. (i) If F φ(t) = t ?(t)/φ(t) is decreasing and 1 < C φ < 2 (where \(C_\Phi = \lim _{t \to + \infty } t\varphi (t)/\Phi (t)\)), then N(L (φ)[0, 1]) = N(L φ[0, 1]) = WCS(L (φ)[0, 1]) = WCS(L φ[0, 1]) = 21?1/Cφ. (ii) If F φ(t) is increasing and C φ > 2, then N(L (φ)[0, 1]) = N(L φ[0, 1]) = WCS(L (φ)[0, 1]) = WCS(L φ[0, 1]) = 21/Cφ.  相似文献   

13.
We study slow entropy in some classes of smooth mixing flows on surfaces. The flows we study can be represented as special flows over irrational rotations and under roof functions which are C2 everywhere except one point (singularity). If the singularity is logarithmic asymmetric (Arnol’d flows), we show that in the scale an(t) = n(log n)t slow entropy equals 1 (the speed of orbit growth is n log n) for a.e. irrational α. If the singularity is of power type (x, γ ∈ (0, 1)) (Kochergin flows), we show that in the scale an(t) = nt slow entropy equals 1 + γ for a.e. α.We show moreover that for local rank one flows, slow entropy equals 0 in the n(log n)t scale and is at most 1 for scale nt. As a consequence we get that a.e. Arnol’d and a.e Kochergin flow is never of local rank one.  相似文献   

14.
We investigate the equiconvergence on TN = [?π, π)N of expansions in multiple trigonometric Fourier series and in the Fourier integrals of functions fLp(TN) and gLp(RN), p > 1, N ≥ 3, g(x) = f(x) on TN, in the case where the “partial sums” of these expansions, i.e., Sn(x; f) and Jα(x; g), respectively, have “numbers” n ∈ ZN and α ∈ RN (nj = [αj], j = 1,..., N, [t] is the integral part of t ∈ R1) containing N ? 1 components which are elements of “lacunary sequences.”  相似文献   

15.
We consider a self-adjoint matrix elliptic operator A ε, ε > 0, on L 2(R d ;C n ) given by the differential expression b(D)*g(x/ε)b(D). The matrix-valued function g(x) is bounded, positive definite, and periodic with respect to some lattice; b(D) is an (m × n)-matrix first order differential operator such that mn and the symbol b(ξ) has maximal rank. We study the operator cosine cos(τA ε 1/2 ), where τ ∈ R. It is shown that, as ε → 0, the operator cos(τA ε 1/2 ) converges to cos(τ(A 0)1/2) in the norm of operators acting from the Sobolev space H s (R d ;C n ) (with a suitable s) to L 2(R d ;C n ). Here A 0 is the effective operator with constant coefficients. Sharp-order error estimates are obtained. The question about the sharpness of the result with respect to the type of the operator norm is studied. Similar results are obtained for more general operators. The results are applied to study the behavior of the solution of the Cauchy problem for the hyperbolic equation ? τ 2 u ε (x, τ) = ?A ε u ε (x, τ).  相似文献   

16.
A stability analysis of the stationary rotation of a system of N identical point Bessel vortices lying uniformly on a circle of radius R is presented. The vortices have identical intensity Γ and length scale γ?1 > 0. The stability of the stationary motion is interpreted as equilibrium stability of a reduced system. The quadratic part of the Hamiltonian and eigenvalues of the linearization matrix are studied. The cases for N = 2,..., 6 are studied sequentially. The case of odd N = 2?+1 ≥ 7 vortices and the case of even N = 2n ≥ 8 vortices are considered separately. It is shown that the (2? + 1)-gon is exponentially unstable for 0 < γR<R*(N). However, this (2? + 1)-gon is stable for γRR*(N) in the case of the linearized problem (the eigenvalues of the linearization matrix lie on the imaginary axis). The even N = 2n ≥ 8 vortex 2n-gon is exponentially unstable for R > 0.  相似文献   

17.
In a Banach space E, we consider the abstract Euler–Poisson–Darboux equation u″(t) + kt?1u′(t) = Au(t) on the half-line. (Here k ∈ ? is a parameter, and A is a closed linear operator with dense domain on E.) We obtain a necessary and sufficient condition for the solvability of the Cauchy problem u(0) = 0, lim t→0+t k u′(t) = u1, k < 0, for this equation. The condition is stated in terms of an estimate for the norms of the fractional power of the resolvent of A and its derivatives. We introduce the operator Bessel function with negative index and study its properties.  相似文献   

18.
This paper studies heat equation with variable exponent u t = Δu + up(x) + u q in ? N × (0, T), where p(x) is a nonnegative continuous, bounded function, 0 < p? = inf p(x) ≤ p(x) ≤ sup p(x) = p+. It is easy to understand for the problem that all nontrivial nonnegative solutions must be global if and only if max {p+, q} ≤ 1. Based on the interaction between the two sources with fixed and variable exponents in the model, some Fujita type conditions are determined that that all nontrivial nonnegative solutions blow up in finite time if 0 < q ≤ 1 with p+ > 1, or 1 < q < 1 + \(\frac{2}{N}\). In addition, if q > 1 + \(\frac{2}{N}\), then (i) all solutions blow up in finite time with 0 < p?p+ ≤ 1 + \(\frac{2}{N}\); (ii) there are both global and nonglobal solutions for p? > 1 + \(\frac{2}{N}\); and (iii) there are functions p(x) such that all solutions blow up in finite time, and also functions p(x) such that the problem possesses global solutions when p? < 1 + \(\frac{2}{N}\) < p+.  相似文献   

19.
This paper is devoted to a study of L~q-tracing of the fractional temperature field u(t, x)—the weak solution of the fractional heat equation(?_t +(-?_x)~α)u(t, x) = g(t, x) in L~p(R_+~(1+n)) subject to the initial temperature u(0, x) = f(x) in L~p(R~n).  相似文献   

20.
We study the inverse problem of the reconstruction of the coefficient ?(x, t) = ?0(x, t) + r(x) multiplying ut in a nonstationary parabolic equation. Here ?0(x, t) ≥ ?0 > 0 is a given function, and r(x) ≥ 0 is an unknown function of the class L(Ω). In addition to the initial and boundary conditions (the data of the direct problem), we pose the problem of nonlocal observation in the form ∫0Tu(x, t) (t) = χ(x) with a known measure (t) and a function χ(x). We separately consider the case (t) = ω(t)dt of integral observation with a smooth function ω(t). We obtain sufficient conditions for the existence and uniqueness of the solution of the inverse problem, which have the form of ready-to-verify inequalities. We suggest an iterative procedure for finding the solution and prove its convergence. Examples of particular inverse problems for which the assumptions of our theorems hold are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号