首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measuring the fermion Yukawa coupling constants is important for understanding the origin of the fermion masses and their relationship with spontaneously electroweak symmetry breaking. In contrast, some new physics(NP) models change the Lorentz structure of the Yukawa interactions between standard model(SM) fermions and the SM-like Higgs boson, even in their decoupling limit. Thus, the precise measurement of the fermion Yukawa interactions is a powerful tool of NP searching in the decoupling limit. In this work, we show the possibility of investigating the Lorentz structure of the bottom-quark Yukawa interaction with the 125 GeV SM-like Higgs boson for future e~+e~- colliders.  相似文献   

2.
We study the dark matter (DM) discovery prospect and its spin discrimination in the theoretical framework of gauge invariant and renormalizable Higgs portal DM models at the ILC with \(\sqrt{s} = 500\) GeV. In such models, the DM pair is produced in association with a Z boson. In the case of the singlet scalar DM, the mediator is just the SM Higgs boson, whereas for the fermion or vector DM there is an additional singlet scalar mediator that mixes with the SM Higgs boson, which produces significant observable differences. After careful investigation of the signal and backgrounds both at parton level and at detector level, we find the signal with hadronically decaying Z boson provides a better search sensitivity than the signal with leptonically decaying Z boson. Taking the fermion DM model as a benchmark scenario, when the DM-mediator coupling \(g_\chi \) is relatively small, the DM signals are discoverable only for benchmark points with relatively light scalar mediator \(H_2\). The spin discriminating from scalar DM is always promising, while it is difficult to discriminate from vector DM. As for \(g_\chi \) approaching the perturbative limit, benchmark points with the mediator \(H_2\) in the full mass region of interest are discoverable. The spin discriminating aspects from both the scalar and the fermion DM are quite promising.  相似文献   

3.
We study an effective theory beyond the standard model(SM) where either of the two additional gauge singlets, a Majorana fermion and a real scalar, constitutes all or some fraction of dark matter. In particular, we focus on the masses of the two singlets in the range of O(10) MeV-O(10) GeV with a neutrino portal interaction, which plays an important role not only in particle physics but also in cosmology and astronomy. We point out that the thermal dark matter abundance can be explained by(co-)annihilation, where the dark matter with a mass greater than 2 GeV can be tested in future lepton colliders, CEPC, ILC, FCC-ee and CLIC, in the light of the Higgs boson invisible decay. When the gauge singlets are lighter than O(100) MeV, the interaction can affect the neutrino propagation in the universe due to its annihilation with cosmic background neutrino into the gauge singlets. Although in this case it can not be the dominant dark matter, the singlets are produced by the invisible decay of the Higgs boson at such a rate which is fully within reach of future lepton colliders. In particular, a high energy cutoff of cosmic-ray neutrino,which may account for the non-detection of Greisen-Zatsepin-Kuzmin(GZK) neutrino or the non-observation of the Glashow resonance, can be set. Interestingly, given the cutoff and the mass(range) of WIMPs, a neutrino mass can be"measured" kinematically.  相似文献   

4.
A number of candidate theories beyond the standard model (SM) predict new scalar bosons below the TeV region. Among these, the radion, which is predicted in the Randall-Sundrum model, and the dilaton, which is predicted by the walking technicolor theory, have very similar couplings to those of the SM Higgs boson, and it is very difficult to differentiate these three spin-0 particles in the expected signals of the Higgs boson at the LHC and Tevatron. We demonstrate that the observation of the ratio σ(γγ)/σ(WW) gives a simple and decisive way to differentiate these, independent of the values of model parameters, the vacuum expectation values of the radion, and dilaton fields.  相似文献   

5.
The amplitude for scalar Higgs boson production in the fusion of two off-shell gluons is calculated including finite (not infinite) masses of quarks in the triangle loop. In comparison to the effective Lagrangian approach, we have found a new term in the amplitude. The matrix element found can be used in the k-factorization approach to the Higgs boson production. The results are compared with the calculations for on-shell gluons. Small deviations from the cos2φ-dependence are predicted. The off-shell effects found are practically negligible. PACS 12.38.Bx; 14.80.Bn; 12.38.Qk; 13.85.Qk  相似文献   

6.
Renormalizable theory of electroweak interactions without scalar particles can be constructed by the modifying the Standard Model. One should remove all terms with the scalar field from the Lagrangian in the unitary gauge. The resulting electroweak theory without the Higgs particle is on mass-shell renormalizable and unitary. Thus the experimental non-observation of the Higgs boson will not mean a problem for the concept of renormalizability in quantum field theory but will confirm the scalar free theory.  相似文献   

7.
The neutral gauge boson BH with the mass of hundreds GeV is the lightest particle predicted by the littlest Higgs (LH) model, and such particle should be the first signal of the LH model at the planed ILC if it exists indeed. In this paper, we study some processes of the BH production associated with the fermion pair at the ILC, i.e., γγ→ ff^- BH. The studies show that the most promising processes to detect BH amongγγ→ ff^- BH are γγ→ l'^+l'^-BH (l' = e,μ), and they can produce the sufficient signals in most parameter space preferred by the electroweak precision data at the ILC. On the other hand, the signal produced via the certain BH decay modes is typical and such signal can be easily identified from the SM background. Therefore, BH, the lightest gauge boson in the LH model, would be detectable at the photon collider realized at the ILC.  相似文献   

8.
The fermion number current is evaluated to leading order in the derivative expansion for chiral fermions in the background of arbitrary Higgs and chiral gauge fields. This current is given by the gauge topological current plus a total divergence term. The total divergence term is absent in Weinberg-Salam theory with one scalar Higgs doublet, even for an arbitrary mass matrix, but appears when several Higgs doublets are present.  相似文献   

9.
We consider a spontaneously broken gauge theory based on the standard model (SM) group with scalar fields that carry arbitrary representations of G, and we investigate some general properties of the charged and neutral current involving these fields. In particular we derive the conditions for having real or complex couplings of the Z boson to two different neutral or charged scalar fields, and for the existence of CP-violating Z-scalar-scalar couplings. Moreover, we study models with the same fermion content as in the SM, with one SU(2) Higgs singlet, and an arbitrary number of Higgs doublets. We show that the structure of the Z-Higgs boson and of the Yukawa couplings in these models can be such that CP-violating form factors which conserve chirality are induced at the one-loop level. Received: 18 December 1998 / Published online: 22 March 1999  相似文献   

10.
We study Higgs boson production and decay in a certain class of little Higgs models with T-parity in which some T-parity partners of the Standard Model (SM) fermions gain their masses through Yukawa-type couplings. We find that the Higgs boson production cross section of a 120 GeV Higgs boson at the CERN LHC via gg fusion process at one-loop level could be reduced by about 45%, 35% and 20%, as compared to its SM prediction, for a relatively low new particle mass scale f=600, 700 and 1000 GeV, respectively. On the other hand, the weak boson fusion cross section is close to the SM value. Furthermore, the Higgs boson decay branching ratio into di-photon mode can be enhanced by about 35% in small Higgs mass region in certain case, for the total decay width of Higgs boson in the little Higgs model is always smaller than that in the SM.  相似文献   

11.
Applying an effective Lagrangian method and an on-shell scheme, we analyze the electroweak corrections to the rare decay b→, s+γ from some special two loop diagrams in which a closed heavy fermion loop is attached to the virtual charged gauge bosons or Higgs. At the decoupling limit where the virtual fermions in the inner loop are much heavier than the electroweak scale, we verify the final results satisfying the decoupling theorem explicitly when the interactions among Higgs and heavy fermions do not contain the nondecoupling couplings. Adopting the universal assumptions on the relevant couplings and mass spectrum of new physics, we find that the relative corrections from those two loop diagrams to the SM theoretical prediction on the branching ratio of B → Xsγ can reach 5% as the energy scale of new physics ANp=200 GeV.  相似文献   

12.
The phenomenology of the low scale U(1)B–L extension of the standard model and its implications at LHC energies is presented. In this model, an extra gauge boson corresponding to B–L gauge symmetry and an extra SM singlet scalar (heavy Higgs boson) are predicted. We show a detailed analysis of both heavy and light Higgs bosons decay and production in addition to the possible decay channels of the new gauge boson. We find that the cross sections of the SM-like Higgs production are reduced by ∼20–30%, while its decay branching ratios remain intact. The extra Higgs boson has relatively small cross sections and the branching ratios of Z→l+l- are of order ∼20% to be compared to ∼3% of the SM results. Hence, the search for Z is accessible via a clean dilepton signal at LHC.  相似文献   

13.
In the SU(3) simple group model, the new neutral gauge boson Z' couples to pairs of SM fermions with couplings fixed in terms of the SM gauge couplings and depending only on the choice of the fermion embedding. In this paper, we calculate the contributions of this new particle to the processes e^+e^-→l^+l^-, bb^-, and cc^- and study the possibility of detecting this new particle via these processes in the future high-energy linear e^+e^- collider(LC) experiments with √s= 500 GeV and £int= 340 fb^-1. We find that the new gauge boson Z' is most sensitive to the process e^+e^-→b^+b^-. As long as Mz,≤2 TeV , the absolute values of the relative correction parameter are larger than 5%. We calculate the forward-backward asymmetries and left-right asymmetries for the process e^+e^-→c^+c^-, with both the universal and anomaly-free fermion embeddings. Bounds on Z' masses are also estimated within 95% confidence level.  相似文献   

14.
It is likely that the LHC will observe a color- and charge-neutral scalar whose decays are consistent with those of the standard model (SM) Higgs boson. The Higgs interpretation of such a discovery is not the only possibility. For example, electroweak symmetry breaking could be triggered by a spontaneously broken, nearly conformal sector. The spectrum of states at the electroweak scale would then contain a narrow scalar resonance, the pseudo-Goldstone boson of conformal symmetry breaking, with Higgs-boson-like properties. If the conformal sector is strongly coupled, this pseudodilaton may be the only new state accessible at high energy colliders. We discuss the prospects for distinguishing this mode from a minimal Higgs boson at the LHC and ILC. The main discriminants between the two scenarios are (i) cubic self-interactions and (ii) a potential enhancement of couplings to massless SM gauge bosons.  相似文献   

15.
We study the properties of heavy fermions in the vector-like representation of the electroweak gauge group SU(2)W×U(1)Y with Yukawa couplings to the standard model Higgs boson. Applying the renormalization group analysis, we discuss the effects of heavy fermions to the vacuum stability bound and the triviality bound on the mass of the Higgs boson. We also discuss the interesting possibility that the Higgs particle is composed of the top quark and heavy fermions. The bound on the composite Higgs mass is estimated using the method of Bardeen, Hill and Lindner (Phys. Rev. D 41 (1990) 1647), 150 GeV ≤ mH ≤ 450 GeV.  相似文献   

16.
We study a two-Higgs doublet model with four generalised CP symmetries in the scalar sector. Electroweak symmetry breaking leads automatically to spontaneous breaking of two of them. We require that these four CP symmetries can be extended from the scalar sector to the full Lagrangian and call this requirement the principle of maximal CP invariance. The Yukawa interactions of the fermions are severely restricted by this requirement. In particular, a single fermion family cannot be coupled to the Higgs fields. For two fermion families, however, this is possible. Enforcing the absence of flavour-changing neutral currents, we find degenerate masses in both families or one family massless and one massive. In the latter case the Lagrangian is highly symmetric, with the mass hierarchy being generated by electroweak symmetry breaking. Adding a third family uncoupled to the Higgs fields and thus keeping it massless we get a model which gives a rough approximation of some features of the fermions observed in Nature. We discuss a number of predictions of the model which may be checked in future experiments at the LHC.  相似文献   

17.
We study a model of scalars which includes both the SM Higgs and a scalar singlet as composites of heavy vector-like fermions. The vector-like fermions are bounded by the super-strong four-fermion interactions. The scalar singlet decays to SM vector bosons through loop of heavy vector-like fermions. We show that the surprisingly large production cross section of di-photon events at 750 GeV resonance and the odd decay properties can all be explained. This model serves as a good model for both SM Higgs and a scalar resonance at 750 GeV.  相似文献   

18.
The scalar Higgs boson mass in a Technicolor model was obtained by Elias and Scadron with the analysis of an homogeneous Bethe–Salpeter equation (BSE), however it was performed before the most recent developments of walking gauge theories. It was not observed in their work that dynamically generated technifermion mass may vary according to the theory dynamics that forms the scalar bound state. This will be done in this work and we also call attention that their calculation must change to take into account the normalization condition of the BSE. We compute the width of the composite boson and show how the gauge group and fermion content of a technicolor theory can be inferred from the measurement of the mass and width of the scalar boson.  相似文献   

19.
 We derive quantum kinetic equations for fermion and boson production starting from a φ4 Lagrangean with minimal coupling to fermions. Decomposing the scalar field into a mean-field part and fluctuations we obtain spontaneous pair creation driven by a self-interacting strong background field. The produced fermion and boson pairs are self-consistently coupled. Consequently back reactions arise from fermion and boson currents determining the time-dependent self-interacting background mean field. We explore the numerical solution with cylindric boundary conditions for the time evolution of the mean field as well as for the number- and energy densities for fermions and bosons. We find that after a characteristic time all energy is converted from the background mean field to particle creation. Applying this general approach to the production of “quarks” and “gluons” a typical time scale for the collapse of the flux tube is 1.5 fm/c. Received February 14, 2002; accepted March 29, 2002 Published online June 24, 2002  相似文献   

20.
We consider a model with nonlinear SSB, which can be considered as a limiting case of the electroweak SM whenM H→∞. It possesses a chain of hidden local gauge symmetries yielding a series of heavy gauge boson triplets, which can be interpreted as effects of the strong self-interactions of the scalar sector and are able to infect via mixing low energy quantities. The theory is non-renormalizable and, therefore, new Lagrangian terms are induced at each loop order. We investigate these quantum-induced interactions (which are of non-standard type) of fermions and vector bosons, and show that they can be expressed in additional Lagrangian terms which obey the symmetry of the original theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号