首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 291 毫秒
1.
We apply the compactness results obtained in the first part of this work, to prove existence and multiplicity results for finite energy solutions to the nonlinear elliptic equation
$$-\triangle u + V \left(\left|x\right|\right) u = g \left(\left|x\right|, u\right) \quad {\rm in} \Omega \subseteq \mathbb{R}^{N},\,N \geq 3,$$
where \({\Omega}\) is a radial domain (bounded or unbounded) and u satisfies u =  0 on \({\partial\Omega}\) if \({\Omega \neq\mathbb{R}^{N}}\) and \({u \rightarrow 0}\) as \({\left|x\right| \rightarrow \infty}\) if \({\Omega}\) is unbounded. The potential V may be vanishing or unbounded at zero or at infinity and the nonlinearity g may be superlinear or sublinear. If g is sublinear, the case with a forcing term \({g\left(\left|\cdot\right|, 0\right) \neq 0}\) is also considered. Our results allow to deal with V and g exhibiting behaviours at zero or at infinity which are new in the literature and, when \({\Omega = \mathbb{R}^{N}}\), do not need to be compatible with each other.
  相似文献   

2.
Let \({\mathcal{M}}\) be a semifinite von Neumann algebra with a faithful, normal, semifinite trace \({\tau}\) and E be a strongly symmetric Banach function space on \({[0,\tau({\bf 1}))}\) . We show that an operator x in the unit sphere of \({E(\mathcal{M}, \tau)}\) is k-extreme, \({k \in {\mathbb{N}}}\) , whenever its singular value function \({\mu(x)}\) is k-extreme and one of the following conditions hold (i) \({\mu(\infty, x) = \lim_{t\to\infty}\mu(t, x) = 0}\) or (ii) \({n(x)\mathcal{M}n(x^*) = 0}\) and \({|x| \geq \mu(\infty, x)s(x)}\) , where n(x) and s(x) are null and support projections of x, respectively. The converse is true whenever \({\mathcal{M}}\) is non-atomic. The global k-rotundity property follows, that is if \({\mathcal{M}}\) is non-atomic then E is k-rotund if and only if \(E(\mathcal{M}, \tau)\) is k-rotund. As a consequence of the noncommutative results we obtain that f is a k-extreme point of the unit ball of the strongly symmetric function space E if and only if its decreasing rearrangement \({\mu(f)}\) is k-extreme and \({|f| \geq \mu(\infty,f)}\) . We conclude with the corollary on orbits Ω(g) and Ω′(g). We get that f is a k-extreme point of the orbit \({\Omega(g),\,g \in L_1 + L_{\infty}}\) , or \({\Omega'(g),\,g \in L_1[0, \alpha),\,\alpha < \infty}\) , if and only if \({\mu(f) = \mu(g)}\) and \({|f| \geq \mu(\infty, f)}\) . From this we obtain a characterization of k-extreme points in Marcinkiewicz spaces.  相似文献   

3.
Perturbation from symmetry for indefinite semilinear elliptic equations   总被引:1,自引:0,他引:1  
We prove the existence of an unbounded sequence of solutions for an elliptic equation of the form \({-\Delta u=\lambda u + a(x)g(u)+f(x), u\in H^1_0(\Omega)}\), where \({\lambda \in \mathbb{R}, g(\cdot)}\) is subcritical and superlinear at infinity, and a(x) changes sign in Ω; moreover, g( ? s) =  ? g(s) \({\forall s}\). The proof uses Rabinowitz’s perturbation method applied to a suitably truncated problem; subsequent energy and Morse index estimates allow us to recover the original problem. We consider the case of \({\Omega\subset \mathbb{R}^N}\) bounded as well as \({\Omega=\mathbb{R}^N, \, N\geqslant 3}\).  相似文献   

4.
Let f be a \(C^{1+\alpha }\) diffeomorphism of a compact Riemannian manifold and \(\mu \) an ergodic hyperbolic measure with positive entropy. We prove that for every continuous potential \(\phi \) there exists a sequence of basic sets \(\Omega _n\) such that the topological pressure \(P(f|\Omega _n,\phi )\) converges to the free energy \(P_{\mu }(\phi ) = h(\mu ) + \int \phi {d\mu }\). We also prove that for a suitable class of potentials \(\phi \) there exists a sequence of basic sets \(\Omega _n\) such that \(P(f|\Omega _n,\phi ) \rightarrow P(\phi )\).  相似文献   

5.
Let \({\Omega}\) be a Lipschitz bounded domain of \({\mathbb{R}^N}\), \({N\geq2}\), and let \({u_p\in W_0^{1,p}(\Omega)}\) denote the p-torsion function of \({\Omega}\), p > 1. It is observed that the value 1 for the Cheeger constant \({h(\Omega)}\) is threshold with respect to the asymptotic behavior of up, as \({p\rightarrow 1^+}\), in the following sense: when \({h(\Omega) > 1}\), one has \({\lim_{p\rightarrow 1^+}\left\|u_{p}\right\| _{L^\infty(\Omega)}=0}\), and when \({h(\Omega) < 1}\), one has \({\lim_{p\rightarrow 1^+}\left\|u_p\right\| _{L^\infty(\Omega)}=\infty}\). In the case \({h(\Omega)=1}\), it is proved that \({\limsup_{p\rightarrow1^+}\left\|u_p\right\|_{L^\infty(\Omega)}<\infty}\). For a radial annulus \({\Omega_{a,b}}\), with inner radius a and outer radius b, it is proved that \({\lim_{p\rightarrow 1^+}\left\|u_p\right\| _{L^\infty(\Omega_{a,b})}=0}\) when \({h(\Omega_{a,b})=1}\).  相似文献   

6.
In a general unbounded uniform C 2-domain \({\Omega \subset \mathbb{R}^n, n \geq 3}\) , and \({1\leq q\leq \infty}\) consider the spaces \({\tilde{L}^q(\Omega)}\) defined by \({\tilde{L^q}(\Omega) := \left\{\begin{array}{ll}L^q(\Omega)+L^2(\Omega),\quad q < 2, \\ L^q(\Omega)\cap L^2(\Omega),\quad q\geq 2, \end{array}\right.}\) and corresponding subspaces of solenoidal vector fields, \({\tilde{L}^q_\sigma(\Omega)}\) . By studying the complex and real interpolation spaces of these we derive embedding properties for fractional order spaces related to the Stokes problem and L p ? L q -type estimates for the corresponding semigroup.  相似文献   

7.
In this paper, we study the asymptotic behavior of viscosity solutions to boundary blow-up elliptic problem \({\Delta_{\infty}u=b(x)f(u),\, x\in\Omega,\,u|_{\partial\Omega}=+\infty,}\) where \({\Omega}\) is a bounded domain with C2-boundary in \({\mathbb{R}^{N}}\), \({b\in \rm C(\bar{\Omega})}\) is positive in \({\Omega}\), which may be vanishing on the boundary, \({f\in C^{1}([0, \infty))}\) is regularly varying or is rapidly varying at infinity.  相似文献   

8.
In this paper we study the following singular p(x)-Laplacian problem
$$\begin{aligned} \left\{ \begin{array}{l@{\quad }l} - \text{ div } \left( |\nabla u|^{p(x)-2} \nabla u\right) =\frac{ \lambda }{u^{\beta (x)}}+u^{q(x)}, &{} \text{ in }\quad \Omega , \\ u>0, &{} \text{ in }\quad \Omega , \\ u=0, &{} \text{ on }\quad \partial \Omega , \end{array}\right. \end{aligned}$$
where \(\Omega \) is a bounded domain in \(\mathbb {R}^N\), \(N\ge 2\), with smooth boundary \(\partial \Omega \), \(\beta \in C^1(\bar{\Omega })\) with \( 0< \beta (x) <1\), \(p\in C^1(\bar{\Omega })\), \(q \in C(\bar{\Omega })\) with \(p(x)>1\), \(p(x)< q(x) +1 <p^*(x)\) for \(x \in \bar{\Omega }\), where \( p^*(x)= \frac{Np(x)}{N-p(x)} \) for \(p(x) <N\) and \( p^*(x)= \infty \) for \( p(x) \ge N\). We establish \(C^{1,\alpha }\) regularity of weak solutions of the problem and strong comparison principle. Based on these two results, we prove the existence of multiple (at least two) positive solutions for a certain range of \(\lambda \).
  相似文献   

9.
We study asymptotic behavior, for large time n, of the transition probability of a two-dimensional random walk killed when entering into a non-empty finite subset A. We show that it behaves like \(4 \tilde u_{A}(x) \tilde u_{-A}(-y) (\lg n)^{-2} p^{n}(y- x)\) for large n, uniformly in the parabolic regime \(|x|\vee |y| =O(\sqrt n)\), where p n (y-x) is the transition kernel of the random walk (without killing) and \(\tilde u_{A}\) is the unique harmonic function in the ‘exterior of A’ satisfying the boundary condition \(\tilde u_{A}(x) \sim \lg |x|\) at infinity.  相似文献   

10.
Let \({\phi : M \to R^{n+p}(c)}\) be an n-dimensional submanifold in an (n + p)-dimensional space form R n+p(c) with the induced metric g. Willmore functional of \({\phi}\) is \({W(\phi) = \int_{M}(S - nH^{2})^{n/2}dv}\) , where \({S = \sum_{\alpha,i, j}(h^{\alpha}_{ij} )^2}\) is the square of the length of the second fundamental form, H is the mean curvature of M. The Weyl functional of (M, g) is \({\nu(g) = \int_{M}|W_{g}|^{n/2}dv}\) , where \({|W_{g}|^{2} = \sum_{i, j,k,l} W^{2}_{ijkl}}\) and W ijkl are the components of the Weyl curvature tensor W g of (M, g). In this paper, we discover an inequality relation between Willmore functional \({W(\phi)}\) and Weyl funtional ν(g).  相似文献   

11.
This paper is concerned with the following Kirchhoff-type equations:
$$\begin{aligned} \left\{ \begin{array}{ll} \displaystyle -\big (a+b\int _{\mathbb {R}^{3}}|\nabla u|^{2}\mathrm {d}x\big )\Delta u+ V(x)u+\mu \phi |u|^{p-2}u=f(x, u)+g(x,u), &{} \text{ in } \mathbb {R}^{3},\\ (-\Delta )^{\frac{\alpha }{2}} \phi = \mu |u|^{p}, &{} \text{ in } \mathbb {R}^{3},\\ \end{array} \right. \end{aligned}$$
where \(a>0,~b,~\mu \ge 0\) are constants, \(\alpha \in (0,3)\), \(p\in [2,3+2\alpha )\), the potential V(x) may be unbounded from below and \(\phi |u|^{p-2}u\) is a Hartree-type nonlinearity. Under some mild conditions on V(x), f(xu) and g(xu), we prove that the above system has infinitely many nontrivial solutions. Specially, our results cover the general Schrödinger equations, the Kirchhoff equations and the Schrödinger–Poisson system.
  相似文献   

12.
We study the asymptotic Dirichlet problem for the minimal graph equation on a Cartan–Hadamard manifold M whose radial sectional curvatures outside a compact set satisfy an upper bound
$$\begin{aligned} K(P)\le - \frac{\phi (\phi -1)}{r(x)^2} \end{aligned}$$
and a pointwise pinching condition
$$\begin{aligned} |K(P) |\le C_K|K(P') | \end{aligned}$$
for some constants \(\phi >1\) and \(C_K\ge 1\), where P and \(P'\) are any 2-dimensional subspaces of \(T_xM\) containing the (radial) vector \(\nabla r(x)\) and \(r(x)=d(o,x)\) is the distance to a fixed point \(o\in M\). We solve the asymptotic Dirichlet problem with any continuous boundary data for dimensions \(n=\dim M>4/\phi +1\).
  相似文献   

13.
Let \(\Omega \) be a bounded domain with smooth boundary in an n-dimensional metric measure space \((\mathbb {R}^n, \langle ,\rangle , e^{-\phi }dv)\) and let \(\mathbf {u}=(u^1, \ldots , u^n)\) be a vector-valued function from \(\Omega \) to \(\mathbb {R}^n\). In this paper, we investigate the Dirichlet eigenvalue problem of a system of equations of the drifting Laplacian: \(\mathbb {L}_{\phi } \mathbf {u} + \alpha [ \nabla (\mathrm {div}\mathbf { u}) -\nabla \phi \mathrm {div} \mathbf {u}]= - \widetilde{\sigma } \mathbf {u}\), in \( \Omega \), and \(u|_{\partial \Omega }=0,\) where \(\mathbb {L}_{\phi } = \Delta - \nabla \phi \cdot \nabla \) is the drifting Laplacian and \(\alpha \) is a nonnegative constant. We establish some universal inequalities for lower order eigenvalues of this problem on the metric measure space \((\mathbb {R}^n, \langle ,\rangle , e^{-\phi }dv)\) and the Gaussian shrinking soliton \((\mathbb {R}^n, \langle ,\rangle _{\mathrm {can}}, e^{-\frac{|x|^2}{4}}dv, \frac{1}{2})\). Moreover, we give an estimate for the upper bound of the second eigenvalue of this problem in terms of its first eigenvalue on the gradient product Ricci soliton \((\Sigma \times \mathbb {R}, \langle ,\rangle , e^{-\frac{\kappa t^2}{2}}dv, \kappa )\), where \( \Sigma \) is an Einstein manifold with constant Ricci curvature \(\kappa \).  相似文献   

14.
In this paper, we prove the following Riesz spaces’ version of the Korovkin theorem. Let E and F be two Archimedean Riesz spaces with F uniformly complete, let W be a nonempty subset of \(E^{+}\), and let \((T_{n})\) be a given sequence of (r-u)-continuous elements of \(\mathcal {L(}E,F)\), such that \(\left| T_{n}-T_{m}\right| x=\left| (T_{n}-T_{m})x\right| \mathcal {\ }\)for all \(x\in E^{+},\) \(m,n\ge n_{0}\) (for a given \(n_{0}\in \mathbb {N} )\). If the sequence \((T_{n}x)_{n}\) \((r-u)\)-converges for every \(x\in W\), then \((T_{n})\) \((r-u)\)-converges also pointwise on the ideal \(E_{W}\), generated by W, to a linear operator \(S_{0}:E_{W}\rightarrow F\). We also prove a similar Korovkin-type theorem for nets of operators. Some applications for f-algebras and orthomorphisms are presented.  相似文献   

15.
We study the existence problem for a class of nonlinear elliptic equations whose prototype is of the form \(-\Delta _p u = |\nabla u|^p + \sigma \) in a bounded domain \(\Omega \subset \mathbb {R}^n\). Here \(\Delta _p\), \(p>1\), is the standard p-Laplacian operator defined by \(\Delta _p u=\mathrm{div}\, (|\nabla u|^{p-2}\nabla u)\), and the datum \(\sigma \) is a signed distribution in \(\Omega \). The class of solutions that we are interested in consists of functions \(u\in W^{1,p}_0(\Omega )\) such that \(|\nabla u|\in M(W^{1,p}(\Omega )\rightarrow L^p(\Omega ))\), a space pointwise Sobolev multipliers consisting of functions \(f\in L^{p}(\Omega )\) such that
$$\begin{aligned} \int _{\Omega } |f|^{p} |\varphi |^p dx \le C \int _{\Omega } (|\nabla \varphi |^p + |\varphi |^p) dx \quad \forall \varphi \in C^\infty (\Omega ), \end{aligned}$$
for some \(C>0\). This is a natural class of solutions at least when the distribution \(\sigma \) is nonnegative and compactly supported in \(\Omega \). We show essentially that, with only a gap in the smallness constants, the above equation has a solution in this class if and only if one can write \(\sigma =\mathrm{div}\, F\) for a vector field F such that \(|F|^{\frac{1}{p-1}}\in M(W^{1,p}(\Omega )\rightarrow L^p(\Omega ))\). As an important application, via the exponential transformation \(u\mapsto v=e^{\frac{u}{p-1}}\), we obtain an existence result for the quasilinear equation of Schrödinger type \(-\Delta _p v = \sigma \, v^{p-1}\), \(v\ge 0\) in \(\Omega \), and \(v=1\) on \(\partial \Omega \), which is interesting in its own right.
  相似文献   

16.
In this paper we are interested in possible extensions of an inequality due to Minkowski: \(\int _{\partial \Omega } H\,dA \ge \sqrt{4\pi A(\partial \Omega )}\) from convex smooth sets to any regular open set \(\Omega \subset \mathbb {R}^3\), where H denotes the scalar mean curvature of \(\partial \Omega \) and A the area. We prove that this inequality holds true for axisymmetric domains which are convex in the direction orthogonal to the axis of symmetry. We also show that this inequality cannot be true in more general situations. However, we prove that \(\int _{\partial \Omega } |H|\,dA \ge \sqrt{4\pi A(\partial \Omega )}\) remains true for any axisymmetric domain.  相似文献   

17.
Let \({\Omega}\) a bounded domain in \({\mathbb{R} ^N }\), and let \({u\in C^1 (\overline{\Omega})}\) a weak solution of the following overdetermined BVP: \({-\nabla (g(|\nabla u|)|\nabla u|^{-1}\nabla u)=f(|x|,u)}\), \({ u > 0 }\) in \({\Omega }\) and \({u=0, \ |\nabla u(x)|=\lambda (|x|)}\) on \({\partial \Omega }\), where \({g\in C([0,+\infty)\cap C^1 ((0,+\infty ) ) }\) with \({g(0)=0}\), \({g'(t) > 0}\) for \({t > 0}\), \({f\in C([0,+\infty ) \times [0, +\infty ) )}\), f is nonincreasing in \({|x|}\), \({\lambda \in C([0, +\infty )) }\) and \({\lambda }\) is positive and nondecreasing. We show that \({\Omega }\) is a ball and u satisfies some “local” kind of symmetry. The proof is based on the method of continuous Steiner symmetrization.  相似文献   

18.
Let A be a 0-sectorial operator with a bounded \(H^\infty (\Sigma _\sigma )\)-calculus for some \(\sigma \in (0,\pi ),\) e.g. a Laplace type operator on \(L^p(\Omega ),\, 1< p < \infty ,\) where \(\Omega \) is a manifold or a graph. We show that A has a \(\mathcal {H}^\alpha _2(\mathbb {R}_+)\) Hörmander functional calculus if and only if certain operator families derived from the resolvent \((\lambda - A)^{-1},\) the semigroup \(e^{-zA},\) the wave operators \(e^{itA}\) or the imaginary powers \(A^{it}\) of A are R-bounded in an \(L^2\)-averaged sense. If X is an \(L^p(\Omega )\) space with \(1 \le p < \infty \), R-boundedness reduces to well-known estimates of square sums.  相似文献   

19.
The Berezin symbol à of an operator A acting on the reproducing kernel Hilbert space H = H(Ω) over some (nonempty) set is defined by \(\tilde A(\lambda ) = \left\langle {A\hat k_\lambda ,\hat k_\lambda } \right\rangle \), λ ∈ Ω, where \(\hat k_\lambda = k_\lambda /\left\| {k_\lambda } \right\|\) is the normalized reproducing kernel of H. The Berezin number of the operator A is defined by \(ber(A) = \mathop {\sup }\limits_{\lambda \in \Omega } \left| {\tilde A(\lambda )} \right| = \mathop {\sup }\limits_{\lambda \in \Omega } \left| {\left\langle {A\hat k_\lambda ,\hat k_\lambda } \right\rangle } \right|\). Moreover, ber(A) ? w(A) (numerical radius). We present some Berezin number inequalities. Among other inequalities, it is shown that if \(T = \left[ {\begin{array}{*{20}c} A & B \\ C & D \\ \end{array} } \right] \in \mathbb{B}(\mathcal{H}(\Omega _1 ) \oplus \mathcal{H}(\Omega _2 ))\), then
$$ber(T) \leqslant \frac{1}{2}(ber(A) + ber(D)) + \frac{1}{2}\sqrt {(ber(A) - ber(D))^2 + \left( {\left\| B \right\| + \left\| C \right\|} \right)^2 } .$$
  相似文献   

20.
In this paper, we study the existence and multiplicity of homoclinic solutions for the following second-order p(t)-Laplacian–Hamiltonian systems
$$\frac{{\rm d}}{{\rm d}t}(|\dot{u}(t)|^{p(t)-2}\dot{u}(t))-a(t)|u(t)|^{p(t)-2}u(t)+\nabla W(t,u(t))=0,$$
where \({t \in \mathbb{R}}\), \({u \in \mathbb{R}^n}\), \({p \in C(\mathbb{R},\mathbb{R})}\) with p(t) > 1, \({a \in C(\mathbb{R},\mathbb{R})}\), \({W\in C^1(\mathbb{R}\times\mathbb{R}^n,\mathbb{R})}\) and \({\nabla W(t,u)}\) is the gradient of W(t, u) in u. The point is that, assuming that a(t) is bounded in the sense that there are constants \({0<\tau_1<\tau_2<\infty}\) such that \({\tau_1\leq a(t)\leq \tau_2 }\) for all \({t \in \mathbb{R}}\) and W(t, u) is of super-p(t) growth or sub-p(t) growth as \({|u|\rightarrow \infty}\), we provide two new criteria to ensure the existence and multiplicity of homoclinic solutions, respectively. Recent results in the literature are extended and significantly improved.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号