首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
以具有高比表面积、优良的导电性和高稳定性的立体构造石墨烯材料(stereotaxically-constructed graphene, SCG)作为添加剂,加入到铅酸蓄电池负极活性材料中,通过XRD、SEM和电化学测试手段系统地分析其对电池性能的影响. 结果表明,SCG材料可以抑制硫酸铅晶体的生长,促进硫酸铅向海绵状铅的转变,延缓不可逆硫酸铅在负极的积累,在0.1 C放电速率下,添加有SCG材料的铅酸蓄电池的负极活性材料的初始放电容量为173.8 mAh·g -1,比未添加碳材料的(151.6 mAh·g -1)高14%. 在高速率部分荷电状态(HRPSoC)条件下, 添加SCG材料的电池循环寿命达到10,889圈,是未在负极活性材料中添加碳材料的电池的循环寿命的303%. 这些结果验证了立体构造石墨烯材料对铅酸蓄电池的积极影响,展现了其在铅酸蓄电池中的良好的应用前景.  相似文献   

2.
锂离子电池的低温性能主要取决于石墨负极,通过添加剂来改善负极的低温性能是研究的焦点之一. 本文比较了3种具有不同含硫官能团的添加剂DTD(ethylene sulfate)、1,3-PS(1,3-propane sultone)和ES(ethylene sulfite)对传统商业化材料人造石墨负极低温性能的影响. DFT(密度泛函理论)计算、扫描伏安法(CV)、扫描电子显微镜(SEM)和电化学测试结果表明,3种含硫添加剂均可在人造石墨负极表面参与成膜,并对其低温性能产生比较大的影响. 其中,DTD对石墨负极低温性能改善最为明显,1,3-PS对石墨负极的低温性能造成不利影响,而ES则没有明显作用. 电化学交流阻抗(EIS)和X射线光电子能谱(XPS)表明,这3种添加剂的不同作用主要在于其所形成的电极界面膜在电化学阻抗方面存在着明显的差异.  相似文献   

3.
随着低比容量硅碳复合材料(<500 mAh/g)在锂离子电池中的商业化应用,硅基负极材料也从实验室研究走向了产业化发展。近年来的研究工作中,许多方法被用来解决硅在循环过程中体积变化(>300%)所带来的一系列问题。在材料结构方面,从最初的硅材料纳米化、硅与其他材料复合等技术手段转变到了硅碳复合材料二次颗粒的结构设计、表面包覆层设计等方法;在应用性能方面,除了早期文献报道的材料比容量、循环性能等参数外,还增加了材料比表面积、振实密度、首次及循环库仑效率等更符合电池实际应用要求的性能参数研究,从而极大地推动了硅基负极材料的商业化应用进程。本文首先综述了近年来硅碳复合材料组成、结构设计的发展脉络,进一步分析了由石墨、软碳、硬碳、碳纤维和石墨烯等碳源合成的硅碳复合材料的结构特点,并对其电化学性能进行分析对比,总结了碳在硅碳复合材料结构及其性能上发挥的作用。最后,对硅碳复合材料制备过程中的结构设计要求和碳材料的选择进行了分析和展望。  相似文献   

4.
以介孔碳(MC)为导电和支撑介质, 在多元醇体系中通过简便的化学还原方法制备纳米结构的介孔碳-锡(MC-Sn)复合材料. 采用扫描电子显微镜(SEM)、高分辨透射电子显微镜(HRTEM)和恒电流充放电实验对所得产物的形貌、结构及电化学性能进行表征. 结果表明, 大量的Sn纳米颗粒均匀且致密地附着在介孔碳上. 作为锂离子电池负极材料, MC-Sn复合物表现出了较好的循环性能和倍率性能. 例如, 在100 mA•g-1的充放电速率下循环40圈, 其放电比容量保持在721.5 mAh•g-1; 当充放电速率增大到1 A•g-1时, 其放电比容量仍高达265.8 mAh•g-1. 简单的制备方法和优越的储锂性能,使得MC-Sn复合材料成为一种理想的高性能锂离子电池负极材料.  相似文献   

5.
张树高 《电化学》2000,6(1):40-44
以有机热解碳(石墨)为原料,用喷雾热蒸发法制备了用于锂离子电池负极的碳膜,用循环伏安法和恒电流充放电法测试了所获碳膜的电化学性能,测试结果表明,在第一循环周期中存在一个还原峰,该还原峰对应在电极表面形成固体电解质中间相膜;当充放电电流大小适合时,容量和X值都较大。基于这些实验结果,可以认为所获得的碳膜作用负极以相对测试其他正极材料电化学性能。  相似文献   

6.
以葡萄糖作为碳源,通过简单的水热反应获得菱形碳包覆碳酸钴(CoCO3/C)复合材料,并研究了其作为锂离子电池负极材料的电化学性能.晶型和表面形貌通过X射线衍射(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)进行表征,用热重-差热分析法(TG-DTA)来测试CoCO3/C材料中碳的含量,用拉曼光谱分析无定型碳的存在. Barrett-Joyner-Halenda (BJH)则用来分析材料的孔径分布情况.实验表明,碳包覆不仅在CoCO3颗粒表面包覆了一层无定性碳,使得CoCO3材料在充放电过程中保持结构的稳定性,也形成了一些大约30 nm左右的介孔,这种孔的存在有助于电解液中离子的传输,从而提高材料的电化学性能.电极材料在0.90C(1.00C = 450 mAh•g-1)倍率下进行循环测试, 500次后的容量仍保持在539 mAh•g-1,显示出了较好的循环性能.当增加到3.00C倍率时CoCO3/C容量为130 mAh•g-1,再恢复到0.15C倍率时容量依然能够达到770 mAh•g-1,表现出了CoCO3/C具有良好的稳定性.  相似文献   

7.
锂离子电池用多孔硅/石墨/碳复合负极材料的研究   总被引:2,自引:0,他引:2  
在两步高能球磨和酸蚀条件下制得了多孔硅/石墨复合材料,并对其进行碳包覆制成多孔硅/石墨/碳复合材料。通过TEM,SEM等测试手段研究了多孔硅材料的结构。作为锂离子电池负极材料,电化学测试结果表明多孔硅/石墨/碳复合材料相比纳米硅/石墨/碳复合材料有更好的循环稳定性。同时,改变复合体配比、热解碳前驱物、粘结剂种类和用量也会对材料的电化学性能产生较大的影响。其中使用质量分数为10%的LA132粘结剂的电极200次循环以后充电容量保持在649.9 mAh·g-1,几乎没有衰减。良好的电化学性能主要归因于主活性体-多孔硅颗粒中的纳米孔隙很好地抑制了嵌锂过程中自身的体积膨胀,而且亚微米石墨颗粒和碳的复合也减轻了电极材料的体积效应并改善了其导电性。  相似文献   

8.
卞锋菊  张忠如  杨勇 《电化学》2013,19(4):355-360
本文通过磷酸铁锂/碳电池研究了电解液添加剂氟代乙烯碳酸酯(FEC)对电池低温性能的影响. 电池充放电实验证明,FEC添加剂能够在负极表面形成良好的固体电解质界面层(SEI). 电解液中添加5% FEC后,电池-40 oC低温放电容量保持率可以从31.7%提高至43.7%,还提高了电池放电电压平台. 交流阻抗测试表明,FEC的加入能够有效降低电池的界面传荷阻抗(Rct). 参比电极测试表明,其主要是降低了碳负极的低温极化.  相似文献   

9.
以锂为负极、硫为正极的锂/硫二次电池,由于其较高的理论能量密度(2 600Wh/kg),而成为最具发展潜力的新型高能化学电源体系.但是,硫正极材料存在的活性物质利用率偏低和循环性能较差等缺点制约了锂/硫电池的快速发展.本文主要综述了基于多孔碳材料负载硫来构筑硫/碳复合材料,进而改善硫电极材料电化学性能的研究进展,多孔碳...  相似文献   

10.
使用玉米杆芯作为碳源, 通过沉积法原位合成生物质碳磷复合材料. 利用X射线衍射(XRD)、 扫描电子显微镜(SEM)和拉曼光谱(Raman)等对复合材料的形貌和结构进行表征, 通过恒电流充放电、 循环伏安(CV)和交流阻抗(EIS)等对复合材料的电化学性能进行了测试. 结果表明, 当碳/磷质量比为4.5∶5.5时, 复合材料具有最佳的电化学性能: 扣除非活性材料的贡献, 室温下首次充电容量为1215.5 mA·h/g, 循环100次后可以保持847.7 mA·h/g 的比容量. 该复合材料随着温度的升高充电比容量逐渐增加: -20 ℃时, 0.1C倍率下的充电比容量为425.6 mA·h/g; 55 ℃时, 首次充电比容量高达1812.3 mA·h/g. 说明适量纳米磷均匀分布在无定形碳导电基体的孔结构中, 可以使制备出的复合材料现出良好的电化学性能.  相似文献   

11.
The acceleration of industrialization and the continuous upgradation of consumption structure has increased the atmospheric content of CO2 far beyond the past levels, leading to a serious global environmental problem. Photocatalytic reduction of CO2 is one of the most promising methods to solve the problem of rising atmospheric CO2 content. The core of this technology is to develop efficient, environment-friendly, and affordable photocatalysts. A photocatalyst is a semiconductor that can absorb photons from sunlight and produce electron-hole pairs to initiate a redox reaction. Owing to their low specific surface areas, significant electron-hole recombination, and less surface-active sites, bulk photocatalysts are not satisfactory. Ultrathin layered materials have shown great potential for photocatalytic CO2 reduction owing to their characteristics of large specific surface area, a large number of low-coordination surface atoms, short transfer distance from the inside to the catalyst surface, along with other advantages. Photoexcited electrons only need to cover a short distance to transfer to the nanowafer surface, and the speed of migrating electrons on the nanowafer surface is much higher than that in the layers or in the bulk catalyst. The ultrathin structure leads to significant coordinative unsaturation and even vacancy defects in the lattice structure of the atoms; while the former can be used as active sites for CO2 adsorption and reaction, the latter can improve the separation of the electron-hole pair. This review summarizes the latest developments in ultrathin layered photocatalysts for CO2 reduction. First, the photocatalytic reduction mechanism of CO2 is introduced briefly, and the factors governing product selectivity are explained. Second, the existing catalysts, such as g-C3N4, black phosphorus (BP), graphene oxide (GO), metal oxide, transition metal dichalcogenides (TMDCs), perovskite, BiOX (X = Cl, Br, I), layered double hydroxide (LDH), 2D-MOF, MXene, and two-dimensional honeycomb-like Ge―Si alloy compounds (gersiloxenes), are classified. In addition, the prevalent preparation methods are summarized, including mechanical stripping, gas stripping, liquid stripping, chemical etching, chemical vapor deposition (CVD), template method, self-assembly of surfactant, and the intermediate precursor method of lamellar Bi-oleate complex. Finally, we introduced the strategy of improving photocatalyst performance on the premise of maintaining its layered structure, including the factors of thickness adjustment, doping, structural defects, composite, etc. The future opportunities and challenges of ultrathin layered photocatalysts for the reduction of carbon dioxide have also been proposed.  相似文献   

12.
制备了一种空心碳球负载二硫化硒(SeS2@HCS)复合材料作为锂离子电池正极材料。通过扫描电子显微镜(SEM),X射线衍射(XRD)以及氮气吸脱附测试(BET)等对产物形貌、组成和结构进行了表征。实验结果显示,采用模板法结合化学聚合法可以合成形貌均一、单分散的空心碳球;其直径约为500 nm,壁厚约为30 nm。进一步采用熔融灌入法可以得到空心碳球负载二硫化硒复合材料。将所制备复合材料组装成电池进行电化学性能测试,与原始二硫化硒块体材料相比,SeS2@HCS复合材料具有更高的初始容量(100 mA·g-1电流密度下,初始放电容量为956 mAh·g-1)和更长的循环寿命(100 mA·g-1电流密度下,循环200圈),同时显示出更优异的倍率性能。研究结果表明该复合材料是一种具有应用前景的新型锂离子电池正极材料。  相似文献   

13.
钛基层状氧化物因具有较低的成本、较好的空气稳定性和循环稳定性,以及较高的安全性等优点,被认为是一种具有潜在应用价值的室温钠离子电池负极材料。本文使用固相法首次设计并合成了一种新型P2相Na_(0.65)Li_(0.13)Mg_(0.13)Ti_(0.74)O_2电极材料。通过延长烧结时间,可以制得混有正交相的样品,进一步研究发现该混合相样品具有更加优异的储钠性能。混合相样品首周可逆容量为96.3 m Ah·g~(-1),而纯P2相仅为85.1 m Ah·g~(-1);在1C倍率下循环400周的容量保持率为89.7%,高于P2相的84.4%,并且倍率性能显著提升(混合相样品56.6 m Ah·g~(-1)/5C vs.纯P2相样品47.1m Ah·g~(-1)/2C)。该研究发现共生的两种结构能够提高材料的离子、电子传导,进而可以改善材料充放电过程中离子、电荷分布的均一性,从而提升材料的循环性能。该研究成果有助于拓展其他层状氧化物材料的研究思路,为提高钠离子电池的能量密度和循环性能提供了可行方法。  相似文献   

14.
本文采用磷酸铁工艺路线制备碳包覆的磷酸铁锂(LiFePO4/C)复合正极材料,系统考察气流粉碎分级过程对LiFePO4/C正极材料及全电池性能的影响. 研究表明:分级前磷酸铁锂颗粒粒度较大,中值粒径为17.37μm,呈规整球形形貌,具有较高的振实密度和碳含量;分级后球形被打碎,振实减小. 全电池测试结果显示:分级过程对全电池的容量、交流内阻、直流内阻、功率密度的影响较小;但分级前电芯的低温放电容量保持率和550周的高温循环保持率分别60.1%和87.5%,明显优于分级后的49.5%和84.7%. 分级前碳层能均匀包覆在磷酸铁锂表面形成均匀导电网络,而分级过程将磷酸铁锂的碳层有一定的剥离和破坏导致性能下降.  相似文献   

15.
王京玥  王睿  王诗琦  王立帆  詹纯 《电化学》2022,28(8):2112131
高镍层状正极材料因其比容量高进而满足电动汽车的续航要求,是锂离子电池中占主导地位的正极材料之一。通常,商业化的高镍层状氧化物是由共沉淀前驱体合成的,而在共沉淀过程中需要对温度、 pH、 搅拌速率等条件的精确控制,以确保镍、钴和锰等阳离子的原子级混合。本文采用了简单的一步固相法成功合成了超高镍含量的层状氧化物材料。通过使用与目标产物具有相似层状结构的前驱体氢氧化镍,成功合成了LiNiO2和LiNixCoyO2 (x = 0.85, 0.9, 0.95; x + y = 1),其电化学性能可与共沉淀前驱体制备的高镍材料相媲美。通过XRD和XPS测试证实了Co掺杂到LiNiO2中,并抑制了高镍氧化物中的锂镍混排。掺杂剂Co在提高高镍材料的放电容量、倍率性能和循环性能方面具有明显的优势。一步固相法为未来制备下一代高性能超高镍锂离子正极材料提供了一种简单有效制备方法。  相似文献   

16.
Lithium-sulfur(Li-S) batteries have been puzzled by the “shuttle effect”. In the recent years, catalytic materials present a huge potential for solving this problem. However, the exploitation for catalytic activity was still challenging in Li-S batteries. In this article, we put forward a single atom catalyst (SAC) of FeN4 coupled with Fe3C on the N-doped carbon (FeN4/Fe3C@NC) by one-step pyrolysis method. The FeN4 and Fe3C synergistically catalyze the polysulfides conversion when the N-doped carbon provides the high conductive three-dimensional skeleton in Li-S batteries. As a result, the FeN4/Fe3C@NC shows a specific capacity of 1100 mA·h/g at 0.2 C(1 C=1675 mA/g). In addition, the FeN4/Fe3C@NC maintains 99.01% of the pristine specific capacity after 100 cycles at 0.5 C, indicating the improved electrochemical performance in Li-S batteries. This work sheds new lights on the design of engineering catalysts for developing high-performance Li-S batteries.  相似文献   

17.
采用氧化铝修饰改性富锂锰基正极材料,探讨了表面活性剂在修饰改性中的作用。利用扫描电子显微镜、X射线衍射仪、透射电子显微镜和电化学性能测试等方法对材料结构和电化学性能进行分析。实验结果表明,十二烷基三甲基溴化铵(DTAB)能使Al_2O_3纳米颗粒均匀包覆在富锂锰基正极材料表面,有效增强了复合材料结构的稳定性。在600 mA·g~(-1)电流密度下,该复合材料的初始放电容量为186mAh·g~(-1)。经过500次循环后,其可逆放电比容量仍高于132 mAh·g~(-1),初始容量保持率高达71%。此外,电压衰退也被有效抑制,复合材料表现出优异的综合电化学性能。  相似文献   

18.
Metal selenides as anode materials for sodium-ion batteries have attracted considerable attention owing to their high theoretical specific capacities and variable composition and structures.However,the achievement of long cycle life and superior rate performance is challenging for these selenide materials due to the volume variation upon cycling.Herein,a composite composed of a new binary-metal selenide[Cu2SnSe3(CSS)]and carbon nanotubes(CNTs)was constructed via a hydrothermal process followed by calcination at 600℃.Benefited from the unique structure of binary-metal selenide and the conductive network of CNTs,the Cu2SnSe3/carbon nanotubes(CSS/CNT)composite exhibits excellent electrochemical performance when used as an anode material for sodium-ion batteries.A reversible specific capacity of 399 mA·h/g can be maintained at a current density of 100 mA/g even after 100 cycles.This work provides a promising strategy for rational design of binary-metal selenides upon delicate crystal phase control as electrode materials.  相似文献   

19.
锂层状氧化物LiNi0.6Co0.2Mn0.2O2(NCM622)是电动汽车高能锂离子电池中最有前途的正极材料之一。然而,目前NCM622的一个问题是其初始库仑效率(ICE)只有约87%,比LiCoO2或LiFePO4至少低6%。在本工作中,我们研究了在烧结过程中形成的表面化学残留物(如LiOH和Li2CO3)和Li/Ni阳离子混排对ICE的影响。结果表明,当烧结温度从825 oC提高到900 oC时,样品的ICE从80.80%提高到86.68%,而相应的Li/Ni阳离子混排和表面化学残留物也有所减少。进一步地,我们使用HNO3溶液洗涤去除825 oC烧结后的样品的表面残留物,发现尽管Li/Ni阳离子紊乱有所增加,但ICE提高3.57%。这些结果表明,通过适当的烧结工艺和后处理技术将表面残留量和Li/Ni阳离子混排降至最低是获得高ICE并改善NCM622电化学性能的关键。  相似文献   

20.
钠具有资源丰富、成本低廉等优势,因此钠离子电池被认为是未来替代锂离子电池的最佳候选者之一。然而,寻找合适的电极材料是当前制备高性能钠离子电池面临的难题之一。在众多候选材料中,钒酸盐材料通过引入阳离子增加钒的配位数,使得材料结构的稳定性得到提高,从而改善了钠离子电池的电化学性能。本文研究了一种原位相分离法合成V_2O_5/Fe_2V_4O_(13)纳米复合材料。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)等对电极材料形貌、组成和结构进行了表征。实验结果显示,V_2O_5/Fe_2V_4O_(13)纳米复合材料相对于V2O5纳米线材料,结构更加稳定,在0.1 A·g~(-1)电流密度下,初始放电容量由295.4 m Ah·g~(-1)提升到342 m Ah·g~(-1),循环100圈容量保持率由26.6%提高到65.8%,获得了更加优异的倍率性能(在1.0 A·g~(-1)电流密度下,容量由44 m Ah·g~(-1)提高到160 m Ah·g~(-1))。因此,V_2O_5/Fe_2V_4O_(13)纳米复合材料的研究为开拓新型高性能钠离子电池负极材料拓宽了思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号