首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 826 毫秒
1.
The compounds [Co(2)(CO)(8)] and nido-7,8-C(2)B(9)H(13) react in CH(2)Cl(2) to give a complex mixture of products consisting primarily of two isomers of the dicobalt species [Co(2)(CO)(2)(eta(5)-7,8-C(2)B(9)H(11))(2)] (1), together with small amounts of a mononuclear cobalt compound [Co(CO)(2)(eta(5)-10-CO-7,8-C(2)B(9)H(10))] (5) and a charge-compensated carborane nido-9-CO-7,8-C(2)B(9)H(11) (6). In solution, isomers 1a and 1b slowly equilibrate. However, column chromatography allows a clean separation of 1a from the mixture, and a single-crystal X-ray diffraction study revealed that each metal atom is ligated by a terminal CO molecule and in a pentahapto manner by a nido-C(2)B(9)H(11) cage framework. The two Co(CO)(eta(5)-7,8-C(2)B(9)H(11)) units are linked by a Co-Co bond [2.503(2) ?], which is supported by two three-center two-electron B-H right harpoon-up Co bonds. The latter employ B-H vertices in each cage which lie in alpha-sites with respect to the carbons in the CCBBB rings bonded to cobalt. Addition of PMe(2)Ph to a CH(2)Cl(2) solution of a mixture of the isomers 1, enriched in 1b, gave isomers of formulation [Co(2)(CO)(PMe(2)Ph)(eta(5)-7,8-C(2)B(9)H(11))(2)] (2). Crystals of one isomer were suitable for X-ray diffraction. The molecule 2a has a structure similar to that of 1a but differs in that whereas one B-H right harpoon-up Co bridge involves a boron atom in an alpha-site of a CCBBB ring coordinated to cobalt, the other uses a boron atom in the beta-site. Reaction between 1b and an excess of PMe(2)Ph in CH(2)Cl(2) gave the complex [CoCl(PMe(2)Ph)(2)(eta(5)-7,8-C(2)B(9)H(11))] (3), the structure of which was established by X-ray diffraction. Experiments indicated that 3 was formed through a paramagnetic Co(II) species of formulation [Co(PMe(2)Ph)(2)(eta(5)-7,8-C(2)B(9)H(11))]. Addition of 2 molar equiv of CNBu(t) to solutions of either 1a or 1b gave a mixture of two isomers of the complex [Co(2)(CNBu(t))(2)(eta(5)-7,8-C(2)B(9)H(11))(2)] (4). NMR data for the new compounds are reported and discussed.  相似文献   

2.
Oxidative addition of the sulfur-sulfur bond of 2,2'-pyridine disulfide (C(5)H(4)NS-SC(5)H(4)N) with L(3)W(CO)(3) [L = pyridine, (1)/(3)CHPT; CHPT = cycloheptatriene] in methylene chloride solution yields the seven-coordinate W(II) thiolate complex W(eta(2)-mp)(2)(CO)(3) (mp = monoanion of 2-mercaptopyridine). This complex undergoes slow further oxidative addition with additional pyridine disulfide, yielding W(eta(2)- mp)(4). Reaction of W(eta(2)-mp)(2)(CO)(3) with NO results in quantitative formation of the six-coordinate W(0) complex W(eta(2)-mp)(2)(NO)(2). Reaction of W(eta(2)-mp)(2)(CO)(3) with NO in the presence of added pyridine disulfide yields the seven-coordinate W(II) nitrosyl complex W(eta(2)-mp)(3)(NO) as well as W(eta(2)-mp)(2)(NO)(2) and trace amounts of W(eta(2)-mp)(4). The complex W(eta(2)-mp)(3)(NO) is formed during the course of the reaction and not by reaction of W(eta(2)-mp)(4) or W(eta(2)-mp)(2)(NO)(2) with NO under these conditions. The crystal structures of W(eta(2)- mp)(2)(CO)(3), W(eta(2)-mp)(2)(NO)(2), and W(eta(2)-mp)(3)(NO) are reported.  相似文献   

3.
The stabilization of the P(CF(3))(2)(-) ion by intermediary coordination to the very weak Lewis acid acetone gives access to single crystals of [18-crown-6-K]P(CF(3))(2). The X-ray single crystal analysis exhibits nearly isolated P(CF(3))(2)(-) ions with an unusually short P-C distance of 184(1) pm, which can be explained by negative hyperconjugation and is also found by quantum chemical hybrid DFT calculation. Coordination of the P(CF(3))(2)(-) ion to pentacarbonyl tungsten has only a minor effect on electronic and geometric properties of the P(CF(3))(2) moiety, while a strong increase in thermal stability of the dissolved species is achieved. The hitherto unknown P(C(6)F(5))(2)(-) ion is stabilized by coordination to pentacarbonyl tungsten and isolated as a stable 18-crown-6 potassium salt, [18-crown-6-K][W[P(C(6)F(5))(2)](CO)(5)], which is fully characterized. The tungstate, [W[P(C(6)F(5))(2)](CO)(5)](-), decomposes slowly in solution, while coordination of the phosphorus atom to a second pentacarbonyl tungsten moiety results in an enhanced thermal stability in solution. The single-crystal X-ray analysis of [18-crown-6-K][[W(CO)(5)](2)[mu-P(C(6)F(5))(2)]].THF exhibits a very tight arrangement of the two C(6)F(5) and two W(CO)(5) groups around the central phosphorus atom. NMR spectroscopic investigations of the [[W(CO)(5)](2)[mu-P(C(6)F(5))(2)]](-) ion exhibit a hindered rotation of both the C(6)F(5) and W(CO)(5) groups in solution.  相似文献   

4.
The reaction of Mn(2)(CO)(7)(mu-S(2)), 1, with Pt(PPh(3))(2)(PhC(2)Ph) yielded the new complex, Mn(2)(CO)(6)Pt(PPh(3))(2)(mu(3)-S)(2), 3, by loss of CO and insertion of a Pt(PPh(3))(2) group into the S-S bond of 1. Complex 3 was characterized crystallographically and was found to consist of an open Mn(2)Pt cluster with one Mn-Mn bond, 2.8154(14) A, one Mn-Pt bond, 2.9109(10) A, and two triply bridging sulfido ligands. Compound 3 reacts with CO to form adduct Mn(2)(CO)(6)(mu-CO)Pt(PPh(3))(2)(mu(3)-S)(2), 4. Compound 4 also contains an open Mn(2)Pt cluster with two triply bridging sulfido ligands but has only one metal-metal bond, Mn-Mn = 2.638(2) A. Under nitrogen, compound 4 readily loses CO and reverts back to 3.  相似文献   

5.
Ethylenediamine (en) solutions of [eta(4)-P(7)M(CO)(3)](3)(-) ions [M = W (1a), Mo (1b)] react under one atmosphere of CO to form microcrystalline yellow powders of [eta(2)-P(7)M(CO)(4)](3)(-) complexes [M = W (4a), Mo (4b)]. Compounds 4 are unstable, losing CO to re-form 1, but are highly nucleophilic and basic. They are protonated with methanol in en solvent giving [eta(2)-HP(7)M(CO)(4)](2)(-) ions (5) and are alkylated with R(4)N(+) salts in en solutions to give [eta(2)-RP(7)M(CO)(4)](2)(-) complexes (6) in good yields (R = alkyl). Compounds 5 and 6 can also be prepared by carbonylations of the [eta(4)-HP(7)M(CO)(3)](2)(-) (3) and [eta(4)-RP(7)M(CO)(3)](2)(-) (2) precursors, respectively. The carbonylations of 1-3 to form 4-6 require a change from eta(4)- to eta(2)-coordination of the P(7) cages in order to maintain 18-electron configurations at the metal centers. Comparative protonation/deprotonation studies show 4 to be more basic than 1. The compounds were characterized by IR and (1)H, (13)C, and (31)P NMR spectroscopic studies and microanalysis where appropriate. The [K(2,2,2-crypt)](+) salts of 5 were characterized by single crystal X-ray diffraction. For 5, the M-P bonds are very long (2.71(1) ?, average). The P(7)(3)(-) cages of 5 are not displaced by dppe. The P(7) cages in 4-6 have nortricyclane-like structures in contrast to the norbornadiene-type geometries observed for 1-3. (31)P NMR spectroscopic studies for 5-6 show C(1) symmetry in solution (seven inequivalent phosphorus nuclei), consistent with the structural studies for 5, and C(s)() symmetry for 4 (five phosphorus nuclei in a 2:2:1:1:1 ratio). Crystallographic data for [K(2,2,2-crypt)](2)[eta(2)-HP(7)W(CO)(4)].en: monoclinic, space group C2/c, a = 23.067(20) ?, b = 12.6931(13) ?, c = 21.433(2) ?, beta = 90.758(7) degrees, V = 6274.9(10) ?(3), Z = 4, R(F) = 0.0573, R(w)(F(2)) = 0.1409. For [K(2,2,2-crypt)](2)[eta(2)-HP(7)Mo(CO)(4)].en: monoclinic, space group C2/c, a = 22.848(2) ?, b = 12.528(2) ?, c = 21.460(2) ?, beta = 91.412(12) degrees, V = 6140.9(12) ?(3), Z = 4, R(F) = 0.0681, R(w)(F(2)) = 0.1399.  相似文献   

6.
The reaction between equimolar amounts of Pt(3)(mu-PBu(t)()(2))(3)(H)(CO)(2), Pt(3)()H, and CF(3)SO(3)H under CO atmosphere affords the triangular species [Pt(3)(mu-PBu(t)()(2))(3)(CO)(3)]X, [Pt(3)()(CO)(3)()(+)()]X (X = CF(3)SO(3)(-)), characterized by X-ray crystallography, or in an excess of acid, [Pt(6)(mu-PBu(t)()(2))(4)(CO)(6)]X(2), [Pt(6)()(2+)()]X(2)(). Structural determination shows the latter to be a rare hexanuclear cluster with a Pt(4) tetrahedral core formed by joining the unbridged sides of two orthogonal Pt(3) triangles. The dication Pt(6)()(2+)() features also extensive redox properties as it undergoes two reversible one-electron reductions to the congeners [Pt(6)(mu-PBu(t)()(2))(4)(CO)(6)](+) (Pt(6)()(+)(), E(1/2) = -0.27 V) and Pt(6)(mu-PBu(t)()(2))(4)(CO)(6) (Pt(6)(), E(1/2) = -0.54 V) and a further quasi-reversible two-electron reduction to the unstable dianion Pt(6)()(2)()(-)() (E(1/2) = -1.72 V). The stable radical (Pt(6)()(+)()) and diamagnetic (Pt(6)()) species are also formed via chemical methods by using 1 or 2 equiv of Cp(2)Co, respectively; further reduction of Pt(6)()(2+)() causes fast decomposition. The chloride derivatives [Pt(6)(mu-PBu(t)()(2))(4)(CO)(5)Cl]X, (Pt(6)()Cl(+)())X, and Pt(6)(mu-PBu(t)()(2))(4)(CO)(4)Cl(2), Pt(6)()Cl(2)(), observed as side-products in some electrochemical experiments, were prepared independently. The reaction leading to Pt(3)()(CO)(3)()(+)() has been analyzed with DFT methods, and identification of key intermediates allows outlining the reaction mechanism. Moreover, calculations for the whole series Pt(6)()(2+)() --> Pt(6)()(2)()(-)()( )()afford the otherwise unknown structures of the reduced derivatives. While the primary geometry is maintained by increasing electron population, the system undergoes progressive and concerted out-of-plane rotation of the four phosphido bridges (from D(2)(d)() to D(2) symmetry). The bonding at the central Pt(4) tetrahedron of the hexanuclear clusters (an example of 4c-2e(-) inorganic tetrahedral aromaticity in Pt(6)()(2+)()) is explained in simple MO terms.  相似文献   

7.
The triply bonded dirhenium(II) synthons Re(2)X(4)(mu-dppm)(2) (X = Cl, Br; dppm = Ph(2)PCH(2)PPh(2)) react with acetylene at room temperature in CH(2)Cl(2) and acetone to afford the bis(acetylene) complexes Re(2)X(4)(mu-dppm)(2)(mu:eta(2),eta(2)-HCCH)(eta(2)-HCCH) (X = Cl (3), Br(4)). Compound 3 has been derivatized by reaction with RNC ligands in the presence of TlPF(6) to give unsymmetrical complexes of the type [Re(2)Cl(3)(mu-dppm)(2)(mu:eta(2),eta(2)-HCCH)(eta(2)-HCCH)(CNR)]PF(6) (R = Xyl (5), Mes (6), t-Bu (7)), in which the RCN ligand has displaced the chloride ligand cis to the eta(2)-HCCH ligand. The reaction of 3 with an additional 1 equiv of acetylene in the presence of TlPF(6) gives the symmetrical all-cis isomer of [Re(2)Cl(3)(mu-dppm)(2)(mu:eta(2),eta(2)-HCCH)(eta(2)-HCCH)(2)]PF(6) (8). The two terminal eta(2)-HCCH ligands in 8 are very labile and can be displaced by CO and XylNC to give the complexes [Re(2)Cl(3)(mu-dppm)(2)(mu:eta(2),eta(2)-HCCH)(L)(2)]Y (L = CO when Y = PF(6) (9); L = CO when Y = (PF(6))(0.5)/(H(2)PO(4))(0.5) (10); L = XylNC when Y = PF(6) (11)). These substitution reactions proceed with retention of the all-cis stereochemistry. Single-crystal X-ray structure determinations have been carried out on complexes 3, 5, 8, 10, and 11. In no instance have we found that the acetylene ligands undergo reductive coupling reactions.  相似文献   

8.
The synthesis, fluxionality and reactivity of the heterobimetallic complex [FeRu(CO)2(mu-CO)2(eta-C5H5)(eta-C5Me5)] are described. Complex exhibits enhanced photolytic reactivity towards alkynes compared to its homometallic analogues, forming the dimetallacyclopentenone complexes [FeRu(CO)(mu-CO){mu-eta]1:eta3-C(O)CR"CR'}eta]-C5H5)(eta-C5Me5)]( R'= R"= H; R'= R"= CO2Me; R'= H, R"= CMe2OH). Prolonged photolysis with diphenylethyne gives the dimetallatetrahedrane complex [FeRu(mu-CO)(mu-eta2:eta2-CPhCPh)(eta-C5H5)(eta-C5Me5)], which contains the first iron-ruthenium double bond. Complexes containing a number of organic fragments can be synthesised using , and . Heating a solution of gave the alkenylidene complex [FeRu(CO)2(mu-CO){mu-eta]1:eta2-C=C(CO2Me)2}(eta-C5H5)(eta-C5Me5)] through an unusual methylcarboxylate migration. Protonation and then addition of hydride to gives the ethylidene complex [FeRu(CO)2(mu-CO)(mu-CHCH3)(eta-C5H5)(eta-C5Me5)] via the ionic vinyl species [FeRu(CO)2(mu-CO)(mu-eta]1:eta2-CH=CH2)(eta-C5H5)(eta-C5Me5)][BF4]. Compound exhibits cis/trans isomerisation at room temperature. Protonation of dimetallacyclopentenone complexes gives the allenyl species [FeRu(CO)2(mu-CO)(mu-eta1:eta2-CH=C=CMe2)(eta-C5H5)(eta-C5Me5)][BF4]. Compound exist as three isomers, two cis and one trans. The two cis isomers are shown to be interconverting by sigma-pi isomerisation. The solid state structures of these compounds were established by X-ray crystallography and are discussed.  相似文献   

9.
Yih KH  Lee GH  Wang Y 《Inorganic chemistry》2003,42(4):1092-1100
The doubly bridged pyridine-2-thionate (pyS) dimolybdenum complex [Mo(eta(3)-C(3)H(5))(CO)(2)](2)(mu-eta(1),eta(2)-pyS)(2) (1) is accessible by the reaction of [Mo(eta(3)-C(3)H(5))(CO)(2)(CH(3)CN)(2)Br] with pySK in methanol at room temperature. Complex 1 reacts with piperidine in acetonitrile to give the complex [Mo(eta(3)-C(3)H(5))(CO)(2)(eta(2)-pyS)(C(5)H(10)NH)] (2). Treatment of 1 with 1,10-phenanthroline (phen) results in the formation of complex [Mo(eta(3)-C(3)H(5))(CO)(2)(eta(1)-pyS)(phen)] (3), in which the pyS ligand is coordinated to Mo through the sulfur atom. Four conformational isomers, endo,exo-complexes [Mo(eta(3)-C(3)H(5))(CO)(eta(2)-pyS)(eta(2)-diphos)] (diphos = dppm, 4a-4d; dppe, 5a-5d), are accessible by the reactions of 1 with dppm and dppe in refluxing acetonitrile. Homonuclear shift-correlated 2-D (31)P((1)H)-(31)P((1)H) NMR experiments of the mixtures 4a-4d have been employed to elucidate the four stereoisomers. The reaction of 4 and pySK or [Mo(CO)(3)(eta(1)-SC(5)H(4)NH)(eta(2)-dppm)] (6) and O(2) affords allyl-displaced seven-coordinate bis(pyridine-2-thionate) complex [Mo(CO)(eta(2)-pyS)(2)(eta(2)-dppm)] (7). All of the complexes are identified by spectroscopic methods, and complexes 1, 5d, 6, and 7 are determined by single-crystal X-ray diffraction. Complexes 1 and 5d crystallize in the orthorhombic space groups Pbcn and Pbca with Z = 4 and 8, respectively, whereas 6 belongs to the monoclinic space group C2/c with Z = 8 and 7 belongs to the triclinic space group Ponemacr; with Z = 2. The cell dimensions are as follows: for 1, a = 8.3128(1) A, b = 16.1704(2) A, c = 16.6140(2) A; for 5d, a = 17.8309(10) A, b = 17.3324(10) A, c = 20.3716(11) A; for 6, a = 18.618(4) A, b = 16.062(2) A, c = 27.456(6) A, beta = 96.31(3) degrees; for 7, a = 9.1660(2) A, b = 12.0854(3) A, c = 15.9478(4) A, alpha = 78.4811(10) degrees, beta = 80.3894(10) degrees, gamma = 68.7089(11) degrees.  相似文献   

10.
Reaction of FvW(2)(H)(2)(CO)(6) with 2/8S(8) in THF results in rapid and quantitative formation of FvW(2)(SH)(2)(CO)(6). The crystal structure of this complex is reported and shows that the two tungsten-hydrosulfide groups are on opposite faces of the fulvalene ligand in an anti configuration. Nevertheless, treatment of FvW(2)(SH)(2)(CO)(6) (1) with PhN[double bond]NPh produces FvW(2)(mu-S(2))(CO)(6) (2) and Ph(H)NN(H)Ph. The crystal structure of the bridging disulfide, which cocrystallizes with 1 in a 2:1 ratio, is also described. Exposure of 2 equiv of *CrCp*(CO)(3) to 1 effects similar H atom transfers yielding 2 HCrCp*(CO)(3) and 2. Attempts to obtain crystals of the latter from solutions derived from this reaction mixture furnished a third product, FvW(2)(mu-S)(CO)(6) (3), which was analyzed crystallographically. The enthalpy of sulfur atom insertion into FvW(2)(H)(2)(CO)(6), yielding 1, has been measured by solution calorimetry.  相似文献   

11.
Low-temperature oxidation of Fe(2)(S(2)C(n)H(2n)(CNMe)(6-x)(CO)x (n = 2, 3; x = 2, 3) affords a family of mixed carbonyl-isocyanides of the type [Fe(2)(S(2)C(n)H(2n)(CO)x(CNMe)(7-x)](2+). The degree of substitution is controlled by the RNC/Fe ratio, as well as the degree of initial substitution at iron, with tricarbonyl derivatives favoring more highly carbonylated products. The structures of the monocarbonyl derivatives [Fe(2)(S(2)C(n)H(2n))(mu-CO)(CNMe)(6)](PF(6))(2) (n = 2,3) established crystallographically and spectroscopically, are quite similar, with Fe---Fe distances of ca. 2.5 A, although the mu-CO is unsymmetrical in the propanedithiolate derivative. Isomeric forms of [Fe(2)(S(2)C(3)H(6))(CO)(CNMe)(6)](PF(6))(2) were characterized where the CO is bridging or terminal, the greatest structural difference being the 0.1 A elongation of the Fe---Fe distance when MeNC (vs CO) is bridging. In the dicarbonyl species, [Fe(2)(S(2)C(2)H(4))(mu-CO)(CO)(CNMe)(5)](PF(6))(2), the terminal CO ligand is situated at one of the basal sites, not trans to the Fe---Fe vector. Oxidation of Fe(2)(S(2)C(2)H(4))(CNMe)(3)(CO)(3) under 1 atm CO gives the deep pink tricarbonyl [Fe(2)(S(2)C(2)H(4))(CO)(3)(CNMe)(4)](PF(6))(2). DFT calculations show that a bridging CO or MeNC establishes a 3-center, 2-electron bond within the two Fe(II) centers, which would otherwise be nonbonding.  相似文献   

12.
The reactivity of amidinato complexes of molybdenum and tungsten bearing pyridine as a labile ligand, [M(eta(3)-allyl)(eta(2)-amidinato)(CO)(2)(pyridine)](M = Mo; 1-Mo, M = W; 1-W), toward bidentate ligands such as 1,10-phenanthroline (phen) and 1,2-bis(diphenylphosphino)ethane (dppe) was investigated. The reaction of 1 with phen at ambient temperature resulted in the formation of monodentate amidinato complexes, [M(eta(3)-allyl)(eta(1)-amidinato)(CO)(2)(eta(2)-phen)](M = Mo; 2-Mo, M = W; 2-W), which has pseudo-octahedral geometry with the amidinato ligand coordinated to the metal in an eta(1)-fashion. The phen ligand was located coplanar with two CO ligands and the eta(1)-amidinato ligand was positioned trans to the eta(3)-allyl ligand. In solution, both complexes 2-Mo and 2-W showed fluxionality, and complex 2-Mo afforded allylamidine (3) on heating in solution. In the reaction of 1 with dppe at ambient temperature, the simple substitution reaction took place to give dppe-bridged binuclear complexes [{M(eta(3)-allyl)(eta(2)-amidinato)(CO)(2)}(2)(mu-dppe)](M = Mo; 5-Mo, M = W; 5-W), whereas mononuclear monocarbonyl complexes [M(eta(3)-allyl)(eta(2)-amidinato)(CO)(eta(2)-dppe)](M = Mo; 6-Mo, M = W; 6-W) were obtained under acetonitrile- or toluene-refluxing conditions. Mononuclear complex 6 was also obtained by the reaction of binuclear complex 5 with 0.5 equivalents of dppe under refluxing in acetonitrile or in toluene. The X-ray analyses and variable-temperature (31)P NMR spectroscopy of complex 6 indicated the existence of the rotational isomers of the eta(3)-allyl ligand, i.e., endo and exo forms, with respect to the carbonyl ligand. The different reactivity of complex 1 toward phen and dppe seems to have come from the difference in the pi-acceptability of each bidentate ligand.  相似文献   

13.
The synthesis of the intramolecularly coordinated heteroleptic organostannylene tungsten pentacarbonyl complexes 4-tBu-2,6-[P(O)(OiPr)(2)](2)C(6)H(2)Sn(X)W(CO)(5) (1, X = Cl; 2, X = F; 3, X = PPh(2)) and of 4-tBu-2,6-[P(O)(OiPr)(2)](2)C(6)H(2)Sn[W(CO)(5)]PPh(2)[W(CO)(5)], 4, are reported. UV-irradiation of compound 4 in tetrahydrofurane serendipitously gave the bis(organostannylene) tungsten tetracarbonyl complex cyclo-O(2)W[OSn(R)](2)W(CO)(4) (R = 4-tBu-2,6-[P(O)(OiPr)(2)](2)C(6)H(2)), 5, that contains an unprecedented W(0)-Sn-O-W(vi) bond sequence. The compounds 1-5 were characterized by means of single crystal X-ray diffraction analysis, (1)H, (13)C, (19)F, (31)P, (119)Sn NMR, and IR spectroscopy, electrospray ionization mass spectrometry (ESI-MS), and elemental analysis. Compound 4 features a hindered rotation about the Sn-P bond.  相似文献   

14.
Adams RD  Captain B  Fu W 《Inorganic chemistry》2003,42(4):1328-1333
The reaction of Ru(5)(CO)(15)(mu(5)-C), 1, with Ph(3)GeH at 150 degrees C has yielded two new germanium-rich pentaruthenium cluster complexes: Ru(5)(CO)(11)(mu-CO)(mu-GePh(2))(3)(mu(5)-C), 2; Ru(5)(CO)(11)(mu;-GePh(2))(4)(mu(5)-C), 3. Both compounds contain square pyramidal Ru(5) clusters with GePh(2) groups bridging three and four of the edges of the Ru(5) square base, respectively. When treated with 1 equiv of Ph(3)GeH at 150 degrees C compound 2 is converted to 3. Reaction of 3 with H(2) at 150 degrees C yielded Ru(5)(CO)(10)(mu-GePh(2))(4)(mu(5)-C)(mu-H)(2), 4, containing two hydride ligands and one less CO ligand. Reaction of 4 with hydrogen at 150 degrees C yielded the compound Ru(5)(CO)(10)(mu-GePh(2))(2)(mu(3)-GePh)(2)(mu(3)-H)(mu(4)-CH), 5, by loss of benzene and conversion of two of the bridging GePh(2) groups into triply bridging GePh groups. Compound 5 contains one triply bridging hydride ligand and a quadruply bridging methylidyne ligand formed by addition of one hydrogen atom to the carbido carbon atom.  相似文献   

15.
The reaction of W(2)(OOCCF(3))(4) with (CO)(9)Co(3)CCOOH and Na[OOCCF(3)] in a nonpolar solvent mixture leads to the formation of the cluster of clusters {[Na][W(2){OOCCCo(3)(CO)(9)}(2)(OOCCF(3))(4)(THF)(2)]}(2), 1, in 40% yield. The structure of 1.3C(6)H(5)CH(3) in the solid state corresponds to a dimer of W(2) dinuclear complexes (monoclinic P2(1)/c, a = 15.234(6) ?, b = 23.326(11) ?, c = 20.658(7) ?, beta = 102.46(3) degrees; V = 7,168(5) ?(3); Z = 4; R(F)() = 8.39%). Each W(2) unit is bridged by two cis cluster carboxylates, and the remaining four equatorial sites are occupied by monodentate [OOCCF(3)](-) ligands. The axial positions contain coordinated THF. The W(2) carboxylate is opened up (W-W distance of 2.449(2) ?) so that the free ends of the [OOCCF(3)](-) ligands on both W(2) carboxylate units can cooperate in chelating two Na(+) ions thereby forming a dimer of W(2) complexes. A distinctive EPR spectrum with g = 2.08 is consistent with each W(2) carboxylate being a mixed-valent W(II)-W(III) species. The reaction of W(2)(OOCCF(3))(4) with (CO)(9)Co(3)CCOOH in THF in the absence of Na[OOCCF(3)] leads to the expected diamagnetic W(II)-W(II) cluster carboxylate W(2){OOCCCo(3)(CO)(9)}(3)(OOCCF(3))(THF)(2), 3.  相似文献   

16.
M(2)(O(t)Bu)(6) compounds (M = Mo, W) react in hydrocarbon solvents with an excess of (t)BuSH to give M(2)(O(t)Bu)(2)(S(t)Bu)(4), red, air- and temperature-sensitive compounds. (1)H NMR studies reveal the equilibrium M(2)(O(t)Bu)(6) + 4(t)BuSH <==> M(2)(O(t)Bu)(2)(S(t)Bu)(4) + 4(t)BuOH proceeds to the right slowly at 22 degrees C. The intermediates M(2)(O(t)Bu)(4)(S(t)Bu)(2), M(2)(O(t)Bu)(3)(S(t)Bu)(3), and M(2)(O(t)Bu)(5)(S(t)Bu) have been detected. The equilibrium constants show the M-O(t)Bu bonds to be enthalpically favored over the M-S(t)Bu bonds. In contrast to the M(2)(O(t)Bu)(6) compounds, M(2)(O(t)Bu)(2)(S(t)Bu)(4) compounds are inert with respect to the addition of CO, CO(2), ethyne, (t)BuC triple bond CH, MeC triple bond N, and PhC triple bond N. Addition of an excess of (t)BuSH to a hydrocarbon solution of W(2)(O(t)Bu)(6)(mu-CO) leads to the rapid expulsion of CO and subsequent formation of W(2)(O(t)Bu)(2)(S(t)Bu)(4). Addition of an excess of (t)BuSH to hydrocarbon solutions of [Mo(O(t)Bu)(3)(NO)](2) and W(O(t)Bu)(3)(NO)(py) gives the structurally related compounds [Mo(S(t)Bu)(3)(NO)](2) and W(S(t)Bu)(3)(NO)(py), with linear M-N-O moieties and five-coordinate metal atoms. The values of nu(NO) are higher in the related thiolate compounds than in their alkoxide counterparts. The bonding in the model compounds M(2)(EH)(6), M(2)(OH)(2)(EH)(4), (HE)(3)M triple bond CMe, and W(EH)(3)(NO)(NH(3)) and the fragments M(EH)(3), where M = Mo or W and E = O or S, has been examined by DFT B3LYP calculations employing various basis sets including polarization functions for O and S and two different core potentials, LANL2 and relativistic CEP. BLYP calculations were done with ZORA relativistic terms using ADF 2000. The calculations, irrespective of the method used, indicate that the M-O bonds are more ionic than the M-S bonds and that E ppi to M dpi bonding is more important for E = O. The latter raises the M-M pi orbital energies by ca. 1 eV for M(2)(OH)(6) relative to M(2)(SH)(6). For M(EH)(3) fragments, the metal d(xz)(),d(yz)() orbitals are destabilized by OH ppi bonding, and in W(EH)(3)(NO)(NH(3)) the O ppi to M dpi donation enhances W dpi to NO pi* back-bonding. Estimates of the bond strengths for the M triple bond M in M(2)(EH)(6) compounds and M triple bond C in (EH)(3)M triple bond CMe have been obtained. The stronger pi donation of the alkoxide ligands is proposed to enhance back-bonding to the pi* orbitals of alkynes and nitriles and facilitate their reductive cleavage, a reaction that is not observed for their thiolate counterpart.  相似文献   

17.
The reaction of [Os3Rh(mu-H)3(CO)12] with an excess amount of 4-vinylphenol (as hydride acceptor) in refluxing m-xylene, chlorobenzene or benzene yielded the three new clusters [Os5Rh2(mu-CO){eta6-C6H4(CH3)2}(CO)16] 1, [Os5Rh2(mu-CO)(eta6-C6H5Cl)(CO)16] 2 and [Os5Rh2(mu-CO)(eta6-C6H6)(CO)16] 3. The treatment of [Os3Rh(mu-H)3(CO)12] 4 in refluxing toluene with an excess amount of 4-vinylphenol afforded a new complex, [Os4Rh(mu-H)(eta6-C6H5CH3)(CO)12], which was isolated as a brown complex in 20% yield together with two known compounds, [Os5Rh2(eta6-C6H5CH3)(mu-CO)(CO)16] in 10% yield and [Os3Rh4(mu3-eta1:eta1:eta1-C6H5CH3)(CO)13] in 5% yield. Complexes 1-4 were fully characterized by IR, 1H NMR spectroscopy, mass spectroscopy, elemental analysis and X-ray crystallography. The molecular structures of compounds 1-3 are isomorphous, and only differ in the arene-derivatives that attach to the same metal core. Their metal cores can be viewed as a monocapped octahedral, in which an osmium atom caps one of the Os-Os-Os triangular faces of the Os4Rh2 metal framework. Complex 4 has a trigonal-bipyramidal metal core with a C6H5Me ligand that is terminally bound to the Rh atom that lies in the trigonal plane of the metal core. The hydrogenation of [Os5Rh2(eta6-C6H5CH3)(mu-CO)(CO)16] with [Os3(mu-H)2(CO)10] in chloroform under reflux resulted in two hydrogen-rich compounds: [Os7Rh3(mu-H)11(CO)23] 5 and [Os5Rh3Cl(mu-H)8(CO)18] 6, both in moderate yields. The reaction of [Os5Rh2(eta6-C6H5CH3)(mu-CO)(CO)16] with hydrogen in refluxing chloroform yielded a new cluster compound, [Os5Rh(mu-H)5(CO)18] 7, in 20% yield, together with a known osmium-rhodium cluster, [Os6Rh(mu-H)7(mu-CO)(CO)18], as a major compound. Clusters 5, 6, and 7 have been fully characterized by both spectroscopic and crystallographic methods. Additionally, a deuterium-exchange experiment was performed on [Os7Rh3(mu-H)11(CO)23] 5 and [Os5Rh3Cl(mu-H)8(CO)18] 6. Both the compounds proved to be able to exchange the H atom with D in the presence of D2SO4, and the absence of the hydride signal in the 1H NMR spectrum is consistent with this. Therefore, clusters 5 and 6 may serve as appropriate new hydrogen storage models.  相似文献   

18.
Zhu G  Parkin G 《Inorganic chemistry》2005,44(26):9637-9639
Mo(PMe(3))(6) and W(PMe(3))(4)(eta(2)-CH(2)PMe(2))H undergo oxidative addition of the O-H bond of RCO(2)H to yield sequentially M(PMe(3))(4)(eta(2)-O(2)CR)H and M(PMe(3))(3)(eta(2)-O(2)CR)(eta(1)-O(2)CR)H(2) (M = Mo and R = Ph, Bu(t); M = W and R = Bu(t)). One of the oxygen donors of the bidentate carboxylate ligand may be displaced by H(2)O to give rare examples of aqua-dihydride complexes, M(PMe(3))(3)(eta(1)-O(2)CR)(2)(OH(2))H(2), in which the coordinated water molecule is hydrogen-bonded to both carboxylate ligands.  相似文献   

19.
A far superior synthesis is reported for W(2)(hpp)(4)Cl(2), a key intermediate in the synthesis of the most easily ionized closed-shell molecule W(2)(hpp)(4) (hpp = the anion of the bicyclic guanidine compound 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidine). At 200 degrees C, the one-pot reaction of the air-stable and commercially available compounds W(CO)(6) and Hhpp in o-dichlorobenzene produces W(2)(hpp)(4)Cl(2) in multigram quantities with isolated yields of over 90%. At lower temperatures, the reaction can lead to other compounds such as W(Hhpp)(2)(CO)(4) or W(2)(mu-CO)(2)(mu-hpp)(2)(eta(2)-hpp)(2), which are isolable in good purity depending upon the specific conditions employed. These compounds provide insight into the reaction pathway to W(2)(hpp)(4)Cl(2) and W(2)(hpp)(4). Two additional derivatives, W(2)(hpp)(4)X(2) where X is PF(6)(-) or the anion tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (TFPB), have also been synthesized and structurally characterized. A comparison of the electrode potentials of W(2)(mu-CO)(2)(mu-hpp)(2)(eta(2)-hpp)(2) and the di-p-anisylformamidinate analogue shows that oxidation of the hpp compound is significantly displaced (1.12 V) and shows that the bicyclic guanidinate ligand is considerably better than the formamidinate anion at stabilizing high oxidation states. A differential pulse voltammogram of W(2)(hpp)(4)(TFPB)(2) in THF shows two reduction processes with an E(1/2) of -0.97 V for the first and -1.81 V (vs Ag/AgCl) for the second. DFT calculations on the W(2)(hpp)(4)(2+) units in W(2)(hpp)(4)X(2) compounds show that the metal-metal bonding orbitals are destabilized by the axial ligands, which accounts for significant variations in the W-W distances. The low-energy gas-phase ionizations of W(2)(hpp)(4) are also reported and discussed.  相似文献   

20.
The solvothermal reaction of (N(C(4)H(9))(4))(2)[Re(2)Cl(8)] with trifluoroacetic acid and acetic anhydride leads to the new rhenium trifluoroacetate dimer N(C(4)H(9))(4)[Re(2)(OOCCF(3))Cl(6)] (1) and to the rhenium carbonyl dimer Re(2)(mu(2)-Cl)(2)(CO)(8) as the rhenium-reduced byproduct. The reaction of the precursor complex, N(C(4)H(9))(4)[Re(2)(OOCCF(3))Cl(6)] (1), with the organometallic carboxylic acid (CO)(6)Co(2)HCCCOOH leads to the cluster of clusters compound Re(2)(OOCCCHCo(2)(CO)(6))(4)Cl(2) (2), which has the dimer structure of Re(2)(OOCR)(4)Cl(2). Cyclic voltammetric measurements show that Re(2)(OOCCCHCo(2)(CO)(6))(4)Cl(2) (2) has one reduction centered on the dirhenium core and a reduction centered on the cobalt atoms. DFT calculations have been used to rationalize the observed displacements of the voltammetric signals in Re(2)(OOCCCHCo(2)(CO)(6))(4)Cl(2) (2) compared to the parent ligand (CO)(6)Co(2)HCCCOOH and rhenium pivalate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号