首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Assume an axisymmetric blunt body or a symmetric profile is located in a uniform supersonic combustible gas mixture stream with the parameters M1, p1, and T1. A detached shock is formed ahead of the body and the mixture passing through the, shock is subjected to compression and heating. Various flow regimes behind the shock wave may be realized, depending on the freestream conditions. For low velocities, temperatures, or pressures in the free stream, the mixture heating may not be sufficient for its ignition, and the usual adiabatic flow about the body will take place. In the other limiting case the temperature behind the adiabatic shock and the degree of gas compression in the shock are so great that the mixture ignites instantaneously and burns directly behind the shock wave in an infinitesimally thin zone, i. e., a detonation wave is formed. The intermediate case corresponds to the regime in which the width of the reaction zone is comparable with the characteristic linear dimension of the problem, for example, the radius of curvature of the body at the stagnation point.The problem of supersonic flow of a combustible mixture past a body with the formation of a detonation front has been solved in [1, 2]. The initial mixture and the combustion products were considered perfect gases with various values of the adiabatic exponent .These studies investigated the effect of the magnitude of the reaction thermal effect and flow velocity on the flow pattern and the distribution of the gasdynamic functions behind the detonation wave.In particular, the calculations showed that the strong detonation wave which is formed ahead of the sphere gradually transforms into a Chapman-Jouguet wave at a finite distance from the axis of symmetry. For planar flow in the case of flow about a circular cylinder it is shown that the Chapman-Jouguet regime is established only asymptotically, i. e., at infinity.This result corresponds to the conclusions of [3, 4], in which a theoretical analysis is given of the asymptotic behavior of unsteady flows with planar, spherical, and cylindrical detonation waves.Available experimental data show that in many cases the detonation wave does not degenerate into a Chapman-Jouguet wave as it decays, bur rather at some distance from the body it splits into an adiabatic shock wave and a slow combustion front.The position of the bifurcation point cannot be determined within the framework of the zero thickness detonation front theory [1], and for the determination of the location of this point we must consider the structure of the combustion zone in the detonation wave. Such a study was made with very simple assumptions in [5].The present paper presents a numerical solution of the problem of combustible mixture flow about a sphere with a very simple model for the structure of the combustion zone, in which the entire flow behind the bow shock wave consists of two regions of adiabatic flow-an induction region and a region of equilibrium flow of products of combustion separated by the combustion front in which the mixture burns instantaneously. The solution is presented only for subsonic and transonic flow regions.  相似文献   

3.
A solution is given in [1] for the problem of the supersonic flow of a combustible gas mixture past a sphere, using one of the simplest models of the combustion zone structure. The entire flow behind the shock wave in this model consists of two regions of adiabatic flow-an induction region and a region of equilibrium flow of combustion products-separated by the combustion front. Mixture passage through the front is accompanied by instantaneous combustion. The solution is given only for the subsonic and transonic regions.In the following the same problem is solved under the assumption that the reactions behind the combustion front proceed in equilibrium. The model used is that of a two-component mixture of the initial and combustion products with a single first-order chemical reaction taking place. This model is used to illustrate the effect of nonequilibrium on the flow pattern and the distribution of the functions in the shock layer. The solution may be used in the vicinity of the axis of symmetry for the case of combustible mixture flow past a blunt body of arbitrary shape.In conclusion the author wishes to thank G. G. Chernyi for his guidance in performing this study.  相似文献   

4.
Many of the published theoretical studies of quasi-one-dimensional flows with combustion have been devoted to combustion in a nozzle, wake, or streamtube behind a normal shock wave [1–6].Recently, considerable interest has developed in the study of two-dimensional problems, specifically, the effective combustion of fuel in a supersonic air stream.In connection with experimental studies of the motion of bodies in combustible gas mixtures using ballistic facilities [7–9], the requirement has arisen for computer calculations of two-dimensional supersonic gas flow past bodies in the presence of combustion.In preceding studies [10–12] the present author has solved the steady-state problem under very simple assumptions concerning the structure of the combustion zone in a detonation wave.In the present paper we obtain a numerical solution of the problem of supersonic hydrogen-air flow past a sphere with account for the nonequilibrium nature of eight chemical reactions. The computations encompass only the subsonic and transonic flow regions.The author thanks G. G. Chernyi for valuable comments during discussion of the article.  相似文献   

5.
The problem of detonation initiation in a supersonic flow of a stoichiometric propane-air mixture occupying partially or completely the cross-section of a plane channel is considered. The initiation in the flow is produced by a step or a wall completely cutting off the flow. The study is conducted within the framework of one-stage combustion kinetics. A numerical method based on the Godunov scheme is employed. The critical conditions for detonation formation are determined in terms of the oncoming flow velocity. A previously unknown mechanism of detonation propagation is found; it is related with the presence of the combustible mixture in the wall layer under an inert gas layer. It is due to the formation of a complicated wave structure of the flow characterized by the penetration of a shock wave formed in the inert gas layer into a combustible mixture layer ahead of the detonation wave with the result that the latter layer is heated and ignited. The process as a whole is periodic in nature, as distinct from the conventional cellular detonation in a homogeneous fluid. Many problems arise in connection with the use of detonation in engines and other power plants. The most important among them are detonation excitation and stabilization in combustion chambers. The detonation initiation within a layer under conditions of unbounded space and a fluid at rest was experimentally investigated in [1]. In the case of a combustion chamber bounded in the transverse direction, some new effects accompanying the detonation might be expected.  相似文献   

6.
可燃介质中飞行圆球诱导斜爆轰的流场结构   总被引:1,自引:0,他引:1  
基于带化学反应的二维轴对称Euler方程,利用带有Superbee限制函数的波传播算法,对氢/氧/ 氮预混气中飞行圆球诱导斜爆轰进行了数值模拟。结果表明,在达姆科勒数Da略大于临界情形时,圆球诱导 的驻定爆轰是一个由强过驱斜爆轰、弱过驱斜爆轰、反应激波和惰性激波组合而成的复合结构。波后的圆球 绕流流场内存在2个亚音速区和1个超音速区。在圆球背风表面,还形成了第2道斜激波。  相似文献   

7.
The salient features of detonation wave propagation in a supersonic flow of a stoichiometric hydrogen-air mixture in plane channels of both constant and variable cross-section are numerically investigated for the purpose of determining the conditions ensuring stabilized detonation. The propagation of a detonation wave formed in a variable-cross-section channel is studied. For different inflow Mach numbers the geometric parameters of a channel providing the detonation combustion stabilization are determined. An investigation of detonation wave stabilization in a supersonic flow of a combustible gas mixture in a plane channel with parallel walls using additional weak discharges is continued. The effects of the flow Mach number, the additional discharge energy, and the discharge location on detonation wave stabilization are studied.  相似文献   

8.
The behavior of the vorticity vector on a discontinuity surface arising in a supersonic nonuniform combustible gas flow with the formation of a shock or detonation wave is studied. In the general case, it is a vortex flow with prescribed distributions of parameters. It is demonstrated that the ratio of the tangential component of vorticity to density remains continuous in passing through the discontinuity surface, while the quantities proper become discontinuous. Results calculated for flow vorticity behind a steady-state detonation wave in an axisymmetric supersonic flow of a combustible mixture of gases are presented. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 6, pp. 15–21, November–December, 2007  相似文献   

9.
The stability of a flow with a stabilized detonation wave is studied within the framework of a detailed kinetic mechanism of the chemical interaction. The flow is due to the initiation of detonation combustion of a stoichiometric hydrogen-air mixture that enters into a plane channel with a constriction at a supersonic velocity greater than that of the self-sustained detonation propagation. The flow under consideration is numerically investigated using the software package developed by the authors. It is established that the flow formed in the channel, whose geometric parameters ensure the detonation stabilization in the case of the inflow Mach number M0 = 5.2, is stable against strong disturbances of a certain type. The effect of an increase in the inflow Mach number and the dustiness of the combustible gas mixture entering into the channel on the stabilization of detonation combustion in the flow is investigated.  相似文献   

10.
The feasibility of steady detonation combustion of a hydrogen-air mixture entering at a supersonic velocity in an axisymmetric convergent-divergent nozzle with a central coaxial cylinder is considered. The problem of the nozzle starting and the initiation of detonation combustion is numerically solved with account for the interaction of the outflowing gas with the external supersonic flow. The modeling is based on the gasdynamic Euler equations for an axisymmetric flow. The calculations are carried out using the Godunov scheme on a fine fixed grid which allows one to study in detail the interaction of an oblique shock wave formed in the diffuser with the nozzle axis. It is shown that a central coaxial cylinder ensures the starting with the formation of supersonic flow throughout the entire nozzle and stable detonation combustion of a stoichiometric hydrogen-air mixture in the divergent section of the nozzle.  相似文献   

11.
圆球诱发斜爆轰波的数值研究   总被引:2,自引:0,他引:2  
斜爆轰发动机是飞行器在高马赫数飞行条件下的一种新型发动机,具有结构简单、成本低和比冲高等优点.但是斜爆轰发动机的来流马赫数范围广,来流条件复杂,为实现斜爆轰波的迅速、可靠引发,采用钝头体来诱发.利用Euler方程和氢氧基元反应模型,对超声速氢气/空气混合气体中圆球诱导的斜爆轰流场进行了数值研究.不同于楔面诱发的斜爆轰波,球体首先会在驻点附近诱发正激波/爆轰波,然后在稀疏波作用下发展为斜激波/爆轰波.模拟结果显示,经过钝头体压缩的预混气体达到自燃温度后,会出现两种流场:当马赫数较低时,由于稀疏波的影响,燃烧熄灭,钝头体下游不会出现燃烧情况;而当马赫数较高时,燃烧阵面能传到下游.分析表明,当钝头体的尺度较小时,驻点附近的能量不足以诱发爆轰波,只会形成明显的燃烧带与激波非耦合结构;当钝头体的尺度较大时,流场中不会出现燃烧带与激波的非耦合现象,且这一特征与马赫数无关.通过调整球体直径,获得了激波和燃烧带部分耦合的燃烧流场结构,这一流场结构在楔面诱发的斜爆轰波中并不存在,说明稀疏波与爆轰波面的相互作用是决定圆球诱发斜爆轰波的关键.  相似文献   

12.
A study is made of the asymptotic solution of the problem of flow past a blunt wedge by a uniform supersonic stream of perfect gas. By separation of variables it is shown that at large distances the disturbance of the flow is damped exponentially. In the case of subsonic flow behind the shock wave the exponent of the leading correction term in the expansion of the shock front is calculated.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 137–140, July–August, 1984.  相似文献   

13.
The asymptotic laws of behavior for plane, cylindrical, and spherical infinitely thin detonation waves were found in [1, 2] for increasing distance from an igniting source in those cases in which the waves changed into Chapman-Jouguet waves as they decayed. It was shown that the plane overdriven detonation wave approaches the Chapman-Jouguet regime asymptotically, while the transition of the cylindrical or spherical strong detonation wave into the Chapman-Jouguet wave may occur at a finite distance from the initiation source.Similar conclusions are valid for the propagation of stationary steadystate detonation waves which arise with flow of combustible gas mixtures past bodies.However, numerous experiments [3, 4] on firing bodies in a detonating gas show that the overdriven detonation wave which forms ahead of the body decays and decomposes into an ordinary compression shock and a slow combustion front. To establish why the wave does not make the transition to the Chapman-Jouguet regime, in the following we consider the propagation of a plane detonation wave and account for finite chemical reaction rates. We use the very simple two-front model (ordinary shock wave and following flame front). Conditions are found for which transition to the Chapman-Jouguet regime does not occur. We first consider the propagation of an unsteady plane wave and then the steady plane wave. It is found that for all the mixtures used in these experiments transition to the Chapman-Jouguet regime is not possible within the framework of the assumed model.  相似文献   

14.
姜宗林 《力学进展》2021,51(1):130-140
先进发动机是航空工业的核心技术,而吸气式高超声速发动机一直是宇航飞行技术研发的首位难题.发动机的性能依赖于其能量转换模式和燃烧组织方法,相关理论研究具有基础性和启发性意义.论文首先讨论了超声速燃烧,它一直是超燃冲压发动机技术的理论基础.然后综述了相关研究进展,提出了吸气式高超声速冲压推进技术的3个临界条件,或者称为临界...  相似文献   

15.
Effect of reflection type on detonation initiation at shock-wave focusing   总被引:12,自引:0,他引:12  
Abstract. From practical and theoretical standpoints, the initiation of combustion in gaseous media due to the shock waves focusing process at various reflectors is a subject of much current interest. The complex gas flowfield coupled with chemical kinetics provides a wide spectrum of possible regimes of combustion, such as fast flames, deflagration, detonation etc. Shock wave reflection at concave surfaces or wedges causes converging of the flow and produces local zones with extremely high pressures and temperatures. The present work deals with the initiation of detonation due to shock waves focusing at parabolic and wedge reflectors. Particular attention has been given to the determination of the critical values of the incident shock wave (ISW) Mach number, parameters of the combustible mixture, and geometrical sizes of reflector at which different combustion regimes could be generated. Received 30 August 1999 / Accepted 23 February 2000  相似文献   

16.
A large number of papers has been devoted to the investigation of the interaction of a plane shock wave with bodies of various geometric shapes, and they have been generalized and classified for a stationary body in [1, 2]. Separate results of experimental and theoretical investigations of the interaction of a shock wave with a wedge, cone, sphere, and cylinder moving with supersonic velocities are contained in [3–9]. Analysis of the available results shows that the features of the unsteady gas flows formed in this case largely depend on the nature of the boundary-value problem that arises for the system of differential gas dynamic equations. The question of the wave structure of the unsteady gas flow and the accuracy of the obtained solution is central to the numerical investigation of the present class of problems. The most characteristic types of unsteady self-similar gas flows that arise on the interaction of a plane shock wave with bodies of a wedge or convex corner type are calculated on the basis of an explicit numerical continuous calculation method of the second order of accuracy. The accuracy of the numerical solutions is discussed on the basis of a comparison with the experimental data. The case of the interaction of a shock wave with the rarefaction wave that arises in a supersonic flow past a convex corner is considered.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 146–152, July–August, 1986.  相似文献   

17.
Supersonic two-phase flow around bodies is encountered in calculating the flow around the last stages of blades of condensing turbines, in studying the motion of airplanes under cloudy conditions, etc. In the latter case, there is, along with erosion of the forward edges of the wing profiles, a change in the wave structure and interference situation in the flow about the airplane, leading to off-design regimes of motion. Supersonic flow of a two-phase mixture around a wedge, without taking account of the influence of the particles on the flow, was investigated in [1–3]. In [4], also in this kind of simplified setting, a study was made of the interaction of particles with the surface of a wedge in which reflection of the particles from the wall was taken into account. Morganthaler [5] made an experimental study of the flow of a mixture of air and aluminum oxide particles around a wedge. In [6] a theoretical study was made of a supersonic two-phase flow around thin flat axially-symmetric bodies. In particular, for the flow around a wedge, closed form solutions were obtained for the form of the shock wave, the gas streamlines and particle paths, and the distribution of all the parameters along the surface of the wedge. On the basis of the equations given in [7] and the method of characteristics, which were developed for flows consisting of a mixture of a gas and heterogeneous particles in nozzles [8,9], we present below a study of a supersonic two-phase flow around a wedge.Moscow. Translated from Izvestiya Akademii Nauk SSSR. Mekhanika Zhidkosti i Gaza, No. 2, pp. 83–88, March–April, 1972.  相似文献   

18.
The experimental investigation of supersonic flow past a sphere with a jet exhausting from the front point of the sphere into the flow at large [1] and moderate [2] Reynolds numbers Re has revealed an effect of shielding from the oncoming stream, this leading to a decrease in the drag coefficient of the sphere and of the energy flux to it. A numerical simulation of the flow has been made in the case of supersonic flow past a sphere with a sonic jet from a nozzle situated on the symmetry axis in the continuum regime [3]. In the present paper, this problem is investigated for flow of a rarefied gas on the basis of numerical solution of a model kinetic equation for a monatomic gas.  相似文献   

19.
Magnetogasdynamic (MGD) flows with detonation waves and combustion fronts have attracted more and more attention in recent years. Intensive heat supply assures such a significant increase in the temperature and pressure behind the heat liberation fronts that the gaseous combustion products become conductive so that the flow map in the electric and magnetic fields can vary substantially as compared with ordinary gasdynamics. In the case of finite gas conductivity, when the magnetic Reynolds numbers Rm are low, the asymptotic laws of detonation wave propagation which either go over into the Chapman-Jouguet (CJ) mode (in a number of cases at a finite distance from the initiation source) or remain overcompressed, have been studied [1]. Stationary flow modes behind detonation waves have been investigated in [2] and the problem of the detonation wave originating at the closed end of the tube emerging in the stationary mode in crossed homogeneous magnetic and electric fields has been examined. Results are presented in this paper of an investigation of one-dimensional self-similar flows caused by piston motion in a hot gas mixture in which a detonation wave or combustion front is propagated. The motion is realized in external electric and magnetic fields which exert a substantial effect on the flow of the conductive combustion products. Domains of application of the governing parameters in which the various flow modes are realized are found by using a qualitative and numerical analysis. The results obtained are used to solve problems about the hypersonic gas flow around a thin wedge in an axial magnetic field.  相似文献   

20.
预爆管技术被广泛地应用在爆轰波发动机的起爆过程中,但是在超音速来流中基于预爆管技术起始爆轰波的研究并未被广泛地开展。基于此,本文中数值研究了横向超音速来流对半自由空间内爆轰波的衍射和自发二次起爆、及管道内的衍射和壁面反射二次起爆两种现象的影响。数值模拟的控制方程为二维欧拉方程,空间上使用五阶WENO格式进行数值离散,采用带有诱导步的两步链分支化学反应模型。所模拟的爆轰波具有规则的胞格结构,对应于用惰性气体高度稀释过的可爆混合物中形成的爆轰波。结果表明:在半自由空间内,在本文所模拟的几何尺寸下,爆轰波并未成功发生二次起爆现象,但是爆轰波的自持传播距离随着横向超音速来流强度的增强而增加。在核心的三角形流动区域外,波面诱导产生了更多的横波结构;在管道内,横向的超音速来流在逆流侧对出口气流产生了压缩作用,能有效提高波面压力,因此反射后的激波压力也比较高。在同样的几何尺寸下,爆轰波在静止和超音速(Ma=2.0)气流中分别出现了二次起爆失败和成功两种现象,这是由于在超音速来流中化学反应面的褶皱诱导产生了横波结构,横波与管壁以及其他横波之间的碰撞提高了前导激波的强度,并最终促进了爆轰波在超声速流主管道内的成功起始。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号