首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Korkisch J  Gross H 《Talanta》1974,21(10):1025-1034
A method is described for the determination by atomic-absorption spectrophotometry of lead, tip to the milligram level, in samples of geological materials. After attack with perchloric-hydrofluoric acid mixture and the removal of perchlorate ion by precipitation as potassium perchlorate, lead is separated from matrix elements by means of anion-exchange in 2M hydrobromic acid on the strongly basic anion-exchange resin Dowex 1 x 8. Lead is adsorbed on the resin column while practically all other accompanying elements pass into the effluent. For the elution of lead 6(M) hydrochloric acid is used and after evaporation of the eluate lead is determined by atomic-absorption spectrophotometry. The method was tested by analysing numerous samples with contents ranging from a few ppm to milligram amounts of lead. In most cases very good agreement of results was obtained.  相似文献   

2.
A method is described for the determination of vanadium and molybdenum in samples of tap and bottled mineral water. After acidification with citric acid the water sample is heated to about 80°C to remove CO2; sodium citrate and ascorbic acid are added and the resulting solution of pH 3 is passed through a column of the strongly basic anion-exchange resin Dowex 1-X8 (citrate form) on which both vanadium and molybdenum are adsorbed as anionic citrate complexes. Vanadium is eluted with 6 M hydrochloric acid; molybdenum is recovered with 2 M perchloric acid-1 M hydrochloric acid. Vanadium and molybdenum are determined in the eluates by atomic-absorption spectrometry. The samples analysed contained 0.1–0.9 μg l?1 vanadium and 0.2–13 μg l?1 molybdenum.  相似文献   

3.
A method is described for the determination of uranium and thorium in manganese nodules. After dissolution of the sample in a mixture of perchloric and hydrofluoric acids, uranium is adsorbed on the strongly basic anion-exchange resin Dowex 1 (chloride form) from 6 M hydrochloric acid. The effluent is evaporated and the residue is taken up in 7 M nitric acid—0.25 M oxalic acid; thorium is then isolated quantitatively by anion-exchange on Dowex 1 (nitrate form). Thorium is eluted with 6 M hydrochloric acid and determined spectrophotometrically by the arsenazo III method. Uranium is eluted from the resin in the chloride form with 1 M hydrochloric acid and then separated from iron, molybdenum and other co-eluted elements on a column of Dowex 1 (chloride form); the medium consists of 50% (v/v) tetrahydrofuran, 40% (v/v) methyl glycol and 10% (vv) 6 M hydrochloric acid. After removal of iron and molybdenum by washing the resin with a mixture of the same composition and with pure aqueous 1 M hydrochloric acid, the adsorbed uranium is eluted with 1 M hydrochloric acid and determined by fluorimetry. The method was used successfully for the determination of ppm-quantities of uranium and thorium in 60 samples of manganese nodules from the Pacific Ocean.  相似文献   

4.
A method is described for the determination of thallium, molybdenum and vanadium in manganese nodules. After dissolution of the sample in a mixture of perchloric and hydrofluoric acids, thallium and molybdenum are adsorbed on the strongly basic anion-exchange resin Dowex 1 (chloride form) from 6 M hydrochloric acid containing bromine. Molybdenum is eluted with 2 M perchloric acid-1 M hydrochloric acid and determined by a.a.s. with a nitrous oxide—acetylene flame. Thallium is eluted with an aqueous solution of sulphur dioxide and, after evaporation of the eluate, this element is determined by a.a.s. with an air—acetylene flame. The same method is used for the assay of vanadium in the 6 M hydrochloric acid effluent. The method was used successfully for the determination of thallium, molybdenum and vanadium at the ppm level in numerous samples of nodules from the Pacific Ocean and Lake Michigan.  相似文献   

5.
A method is described for the determination of Mn, Cu, Co, Zn, Cd, Pb and U in samples of manganese nodules. After dissolution of the sample in concentrated hydrochloric acid, the elements are adsorbed on a column of the strongly basic anion-exchange resin Dowex 1 from a medium consisting of 50 % (v/v) hexone, 40 % (v/v) isopropanol and 10 % (v/v) 12 M hydrochloric acid. After removal of iron by washing the resin bed with a mixture of the same composition, 6 M hydrochloric acid is passed through the column to elute Mn, Cu, Co, and Pb, and then 1 M hydrochloric acid and 2 M nitric acid to elute Zn, Cd and U. In the eluates the elements are determined by atomic-absorption spectrometry except for uranium which is determined by fluorimetry. The method was used successfully for the determination of mg and p.p.m. quantities of Mn, Cu, Co, Zn, Cd, Pb and U in 17 samples of manganese nodules from the Pacific Ocean.  相似文献   

6.
Korkisch J  Hübner H 《Talanta》1976,23(4):283-288
A method is described for the determination of uranium in minerals and rocks by spectrophotometry and fluorimetry. After treatment of the sample with hydrochloric acid, uranium is separated from matrix elements by adsorption on a column of the strongly basic anion-exchange resin Dowex 1 x 8 from an organic solvent system consisting of IBMK, tetrahydrofuran and 12M hydrochloric acid (1:8:1 v v ). Following removal of iron, molybdenum and co-adsorbed elements by washing first with the organic solvent system and then with 6M hydrochloric acid, the uranium is eluted with 1M hydrochloric acid. In the eluate, uranium is determined by means of the spectrophotometric arsenazo III method or fluorimetrically. The suitability of the method for the determination of both trace and larger amounts of uranium was tested by analysing numerous geochemical reference samples with uranium contents in the range 10(-1)-10(4) ppm. In practically all cases very good agreement of results was obtained.  相似文献   

7.
Donaldson EM 《Talanta》1980,27(2):79-84
A simple and moderately rapid method for determining 0.001% or more of molybdenum in ores, iron and steel is described. After sample decomposition, molybdenum is separated from the matrix elements, except tungsten, by chloroform extraction of its alpha-benzoinoxime complex from a 1.75 M hydrochloric-0.13 M tartaric acid medium. Depending on the amount of tungsten present, molybdenum, if necessary, is back-extracted into concentrated ammonia solution and subsequently separated from coextracted tungsten by chloroform extraction of its xanthate complex from a 1.5M hydrochloric-0.13M tartaric acid medium. It is ultimately determined by atomic-absorption spectrophotometry, at 313.3 nm, in a 15% v/v hydrochloric acid medium containing 1,000 microg/ml of aluminium as the chloride, after evaporation of either extract to dryness with nitric, perchloric and sulphuric acids and dissolution of the salts in dilute ammonia solution.  相似文献   

8.
A method is described for the selective separation of μg and mg amounts of rhenium(VII) from molybdenum (VI) and many other metal ions by means of the strongly basic anion-exchange resin Dowex 1-X8. The separation is based on the preferential elution of molybdenum by a 90% (v/v) methanol-10% 6 M nitric acid mixture; rhenium and a few other elements are retained while molybdenum and most other metal ions including Fe(III), Ca, Mg, Mn, U, Cu, V, etc., are practically unadsorbed. After elution of the adsorbed rhenium with 70% (v/v) tetrahydrofuran-30% 9 M hydrochloric acid, the rhenium is determined spectrophotometrically by a modified thiocyanate method.  相似文献   

9.
Donaldson EM  Wang M 《Talanta》1986,33(3):233-242
Methods for determining ~ 0.2 mug g or more of silver and cadmium, ~ 0.5 mug g or more of copper and ~ 5 mug g or more of antimony, bismuth and indium in ores, concentrates and related materials are described. After sample decomposition and recovery of antimony and bismuth retained by lead and calcium sulphates, by co-precipitation with hydrous ferric oxide at pH 6.20 +/- 0.05, iron(III) is reduced to iron(II) with ascorbic acid, and antimony, bismuth, copper, cadmium and indium are separated from the remaining matrix elements by a single methyl isobutyl ketone extraction of their iodides from ~2M sulphuric acid-0.1M potassium iodide. The extract is washed with a sulphuric acid-potassium iodide solution of the same composition to remove residual iron and co-extracted zinc, and the extracted elements are stripped from the extract with 20% v v nitric acid-20% v v hydrogen peroxide. Alternatively, after the removal of lead sulphate by filtration, silver, copper, cadmium and indium can be extracted under the same conditions and stripped with 40% v v nitric acid-25% v v hydrochloric acid. The strip solutions are treated with sulphuric and perchloric acids and ultimately evaporated to dry ness. The individual elements are determined in a 24% v v hydrochloric acid medium containing 1000 mug of potassium per ml by atomic-absorption spectrophotometry with an air-acetylene flame. Tin, arsenic and molybdenum are not co-extracted under the conditions above. Results obtained for silver, antimony, bismuth and indium in some Canadian certified reference materials by these methods are compared with those obtained earlier by previously published methods.  相似文献   

10.
Donaldson EM 《Talanta》1988,35(8):633-639
A method for determining approximately 0.01 mug/g or more of selenium in ores, concentrates, rocks, soils, sediments and related materials is described. After sample decomposition selenium is reduced to selenium(IV) by heating in 4M hydrochloric acid and separated from the matrix elements by toluene extraction of its 5-nitropiazselenol complex from approximately 4.2M hydrochloric acid. After the extract has been washed with 2% nitric acid to remove residual iron, copper and chloride, the selenium in the extract is oxidized to selenium(VI) with 20% bromine solution in cyclohexane and stripped into water. This solution is evaporated to dryness in the presence of nickel, and selenium is ultimately determined in a 2% v/v nitric acid medium by graphite-furnace atomic-absorption spectrometry at 196.0 nm with the nickel functioning as matrix modifier. Common ions, including large amounts of iron, copper and lead, do not interfere. More than 1 mg of vanadium(V) and 0.25 mg each of platinum(IV), palladium(II), and gold(III) causes high results for selenium, and more than 1 mg of tungsten(VI) and 2 mg of molybdenum(VI) causes low results. Interference from chromium(VI) is eliminated by reducing it to chromium(III) with hydroxylamine hydrochloride before the formation of the selenium complex.  相似文献   

11.
A method is described for the determination of uranium by fluorimetry and spectrophotometry in samples of natural non-saline waters. After acidification with hydrochloric acid, the water sample is filtered and, following the addition of ascorbic acid and potassium thiocyanate, passed through a column of the strongly basic anion-exchange resin Dowex 1-X8 (thiocyanate form). On this exchanger uranium is adsorbed as an anionic thiocyanate complex. After removal of iron and other coadsorbed elements by washing first with a mixture consisting of 50 vol.% tetrahydrofuran, 40 vol.% methyl glycol and 10 vol.% 6 M hydrochloric acid, and then with pure aqueous 6 M hydrochloric acid, the uranium is eluted with 1 M hydrochloric acid. In the eluate, uranium is determined fluorimetrically or by means of the spectrophotometric arsenazo III method. The procedure was used for the routine determination of uranium in water samples collected in Austria.  相似文献   

12.
Ishizaki M  Ueno S 《Talanta》1979,26(7):523-526
A highly sensitive and simple method for determination of vanadium in plants and biological samples by solvent extraction and flameless atomic-absorption spectrometry with a carbon tube coated with pyrolytic graphite is described. After digestion of the sample, vanadium is separated by extraction of its N-cinnamoyl-N-2,3-xylylhydroxylamine complex into carbon tetrachloride from 6M hydrochloric acid medium. The method can be used to determine vanadium in plants and biological samples with average recovery of 94% and coefficient of variation of 14%. The sensitivity (1% absorption) is estimated to be 4 x 10(-11) g.  相似文献   

13.
Korkisch J  Krivanec H 《Talanta》1976,23(4):295-300
A method is described for the determination of uranium and thorium in samples of natural waters. After acidification with citric acid the water sample is filtered and sodium citrate and ascorbic acid are added. The resulting solution of pH 3 is passed through a 4-g column of Dowex 1 x 8 (citrate form) on which both uranium and thorium are adsorbed as anionic citrate complexes. Thorium is eluted with 8M hydrochloric acid and separated from co-eluted substances by anion-exchange in 8M nitric acid medium on a separate 2-g column of the same resin in the nitrate form. After complete removal of iron by washing with a mixture consisting of IBMK, acetone and 1M hydrochloric acid (1:8:1 v v ) and treatment of the resin with 6M hydrochloric acid, the uranium is eluted from the 4-g column with 1M hydrochloric acid. In the eluate thorium is determined spectrophotometrically (arsenazo III method) while fluorimetry is employed for the assay of uranium. The procedure was used for the determination of uranium and thorium in numerous water samples collected in Austria, including samples of mineral-waters. The results indicate that a simple relationship exists between the uranium and thorium contents of waters which makes it possible to calculate the approximate thorium content of a sample on the basis of its uranium concentration and vice versa.  相似文献   

14.
Korkisch J  Sorio A  Steffan I 《Talanta》1976,23(4):289-294
A method is described for the atomic-absorption determination of beryllium in liquid environmental samples after separation by solvent extraction and cation-exchange. The beryllium is first isolated from natural waters and beverages by chloroform extraction of its acetylacetonate from a solution at pH 7 and containing EDTA. The chloroform extract is then mixed in the ratio of 3:6:1 with tetrahydrofuran and methanol containing nitric acid, and passed through a column of Dowex 50 x 8 (H(+)-form). After removal of acetylacetone, chloroform and tetrahydrofuran by washing the resin bed with methanol-HNO(3), beryllium is eluted with 6M hydrochloric acid and determined by atomic-absorption spectroscopy. The method was successfully applied to determine beryllium in tap-, river- and sea-water samples, mineral waters and wines. Beryllium contents in the range from < 0.01 to 2.3 microg/l were found in these materials.  相似文献   

15.
Elemental selenium and tellurium, and gaseous inorganic forms of Se(IV), Se(VI), Te(IV) and Te(VI) have been determined after their adsorption on gold-coated beads. After leaching, with water and dilute hydrochloric and nitric acids, the different chemical species in each acid fraction were separated with an anion-exchange resin (Bio-Rad AG-1X8) and a cation-exchange resin (Amberlite IR-120 Plus) by varying the acidity of the leaching agent. Subsequent analysis was by graphite-fumace atomic-absorption spectrometry. The lower detection limit for Se and Te was 0.03 ng/M(3) with a precision of +/- 5%. The average amounts of selenium in interior and exterior air samples were about 4.73 and 1.93 ng/m(3) respectively. For tellurium the corresponding values were about 0.78 and 0.24 ng/m(3).  相似文献   

16.
Donaldson EM 《Talanta》1982,29(12):1069-1075
A method for determining 0.1 μg/g or more of silver in ores and concentrates and 0.001 μg/ml or more of silver in zinc process solutions is described. Silver is separated from the matrix elements by chloroform extraction of the tribenzylamine—silver bromide ion-association complex from 0.08M potassium bromide—2M sulphuric acid and stripped with 9M hydrobromic acid. This solution is evaporated to dryness and organic material is destroyed with nitric and perchloric acids. Silver is determined by atomic-absorption spectrophotometry in an air—acetylene flame, at 328.1 nm, in a 10% v/v hydrochloric acid—1% v/v diethylenetriamine medium. Cadmium, bismuth and molybdenum are partly co-extracted but do not interfere. The method is also applicable to copper metal and copper-base alloys. Results obtained by this method are compared with those obtained by a fire-assay/atomic-absorption method.  相似文献   

17.
A method is described for the determination of beryllium in geological and industrial samples. After dissolution of the sample in mineral acids, beryllium is separated from the matrix elements by chloroform extraction of its acetylacetonate from a solution of pH 7 containing ascorbic acid and EDTA. Beryllium is separated from the organic extract and from co-extracted aluminium by means of a column of the strongly acidic cation-exchanger Dowex 50; beryllium is adsorbed from a medium consisting of 60 % (v/v) tetrahydrofuran, 30 % (v/v) chloroform and 10 % (v/v) methanol containing hydrochloric acid, aluminium is removed with 0.4 M oxalic acid and after elution with 6 M hydrochloric acid, beryllium is determined by atomic-absorption spectrometry with a nitrous oxide-acetylene flame. The method was used to determine p.p.m. and sub-p.p.m. quantities of beryllium in geochemical reference materials, U3O3 and yellow cake samples, and manganese nodules.  相似文献   

18.
Ficklin WH 《Talanta》1983,30(5):371-373
The predominant species of arsenic in ground water are probably arsenite and arsenate. These can be separated with a strong anion-exchange resin (Dowex 1 x 8; 100-200 mesh, acetate form) in a 10 cm x 7 mm column. Samples are filtered and acidified with concentrated hydrochloric acid (1 ml per 100 ml of sample) at the sample site. Five ml of the acidified sample are used for the separation. At this acidity, As(III) passes through the acetate-form resin, and As(V) is retained. As(V) is eluted by passage of 0.12M hydrochloric acid through the column (resulting in conversion of the resin back into the chloride form). Samples are collected in 5-ml portions up to a total of 20 ml. The arsenic concentration in each portion is determined by graphite-furnace atomic-absorption spectrophotometry. The first two fractions give the As(III) concentration and the last two the As(V) concentration. The detection limit for the concentration of each species is 1 mug l .  相似文献   

19.
Donaldson EM 《Talanta》1979,26(11):999-1010
Methods for determining trace and moderate amounts of antimony in copper, nickel, molybdenum, lead and zinc concentrates and in ores are described. Following sample decomposition, antimony is oxidized to antimony(V) with aqua regia, then reduced to antimony(III) with sodium metabisulphite in 6M hydrochloric acid medium and separated from most of the matrix elements by co-precipitation with hydrous ferric and lanthanum oxides. Antimony (>/= 100 mug/g) can subsequently be determined by atomic-absorption spectrophotometry, at 217.6 nm after dissolution of the precipitate in 3M hydrochloric acid. Alternatively, for the determination of antimony at levels of 1 mug/g or more, the precipitate is dissolved in 5M hydrochloric acid containing stannous chloride as a reluctant for iron(III) and thiourea as a complexing agent for copper. Then tin is complexed with hydrofluoric acid, and antimony is separated from iron, tin, lead and other co-precipitated elements, including lanthanum, by chloroform extraction of its xanthate. It is then determined spectrophotometrically, at 331 or 425 nm as the iodide. Interference from co-extracted bismuth is eliminated by washing the extract with hydrochloric acid of the same acid concentration as the medium used for extraction. Interference from co-extracted molybdenum, which causes high results at 331 nm, is avoided by measuring the absorbance at 425 nm. The proposed methods are also applicable to high-purity copper metal and copper- and lead-base alloys. In the spectrophotometric iodide method, the importance of the preliminary oxidation of all of the antimony to antimony(V), to avoid the formation of an unreactive species, is shown.  相似文献   

20.
A simple and rapid method has been developed for the determination of molybdenum and vanadium in seawater using ion-exchange preconcentration and inductively coupled plasma atomic emission spectrometry (ICP-AES). One hundred milliliters of seawater prepared as 0.05 M hydrochloric acid solution is passed through a cellulose phosphate column, and molybdenum and vanadium adsorbed on the cellulose are eluted simultaneously with dilute ammonia solution. The effluent collected is evaporated to a small volume, in which molybdenum and vanadium can be determined by ICP-AES. The overall recoveries of molybdenum and vanadium are 93.6 and 80.4%, respectively, at the level of 1 μgMo/100 ml and 0.1 μgV/100 ml. The proposed method has been successfully applied to the determination of the two elements in several seawater samples. Relative standard deviations (n = 3) are 2.0-2.9 and 0.3-4.3% for molybdenum and vanadium, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号