首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
含氮配位原子的希夫碱型化合物在分析化学、合成化学、药学等方面有广泛的应用。近十多年来,随着新药物的研制和生物无机化学的发展,其研究正在不断深入。肟类化合物在结构上与希夫碱型化合物主要不同之处是在于它与氮原子相连的基团是羟基,它在适当的条件下可参与金属配位或形成氢键,研究其配位模式有较重要的理论意义。我们合成了一个新的含醚氧链的双肟化合物,2,2'—双[2—(邻甲酰肟苯氧基)乙基]醚(H_2BFO)。本  相似文献   

2.
Quantum-chemical calculations of the 1,10-phenanthroline complexes [M(en)(1,10-phen)]2+ (M = Pt, Pd, Ni; en = NH2C2H4NH2) were performed by the DFT B3LYP method in the 6-31G** basis set using the GAMESS-2006 program package. The calculations were also performed for the nickel complexes with 2,2′-bi-1,10-phenanthroline, [Ni(2,2′-bi-1,10-phen)]2+, and with its electron-excessive analog, [Ni(2,2′-bi-1,10-phen)]0, and also for the octahedral complex cation [Ni(2,2′-bi-1,10-phen)Cl(H2O)]+ characterized by single crystal X-ray diffraction. For the Ni(II) complexes, the stabilities of their high-and low-spin isomers were evaluated, and the structural features were revealed. The barriers to mutual transformations of the low-and high-spin Ni(II) complexes are low.  相似文献   

3.
Ni(II), Cu(II), Co(II), and Pd(II) complexes were synthesized with a Schiff base containing thioether with ONS donors chelating to the metal center. The ligand and complexes were characterized by elemental analysis, FT-IR, 1H-NMR, UV–visible spectroscopy and magnetic studies. The crystal structures of the ligand and its Ni(II) and Pd(II) complexes were determined by single-crystal X-ray diffraction analysis. Structures revealed that the ligand chelated with Ni(II) and Pd(II) center in slightly distorted octahedral and slightly distorted square planar fashion, respectively. DFT studies of the Pd(II) complex revealed that the calculated structural parameters are very close with the experimentally observed data. The Cu(II) complex shows very good catalytic activity toward the conversion of alcohol to aldehyde under aerobic oxidation with ammonium persulfate.  相似文献   

4.
[Pt(2,2'-bpy)(1-MeC-N3)(2)](NO(3))(2) (1) (2,2'-bpy = 2,2'-bipyridine; 1-MeC = 1-methylcytosine) exists in water in an equilibrium of head-tail and head-head rotamers, with the former exceeding the latter by a factor of ca. 20 at room temperature. Nevertheless, 1 reacts with (en)Pd(II) (en = ethylenediamine) to give preferentially the dinuclear complex [Pt(2,2'-bpy)(1-MeC(-)-N3,N4)(2)Pd(en)](NO(3))(2)·5H(2)O (2) with head-head arranged 1-methylctosinato (1-MeC(-)) ligands and Pd being coordinated to two exocyclic N4H(-) positions. Addition of AgNO(3) to a solution of 2 leads to formation of a pentanuclear chain compound [{Pt(2,2'-bpy)(1-MeC(-))(2)Pd(en)}(2)Ag](NO(3))(5)·14H(2)O (5) in which Ag(+) cross-links two cations of 2 via the four available O2 sites of the 1-MeC(-) ligands. 2 and 5 appear to be the first X-ray structurally characterized examples of di- and multinuclear complexes derived from a Pt(II) species with two cis-positioned cytosinato ligands adopting a head-head arrangement. (tmeda)Pd(II) (tmeda = N,N,N',N'-tetramethylethylenediamine) and (2,2'-bpy)Pd(II) behave differently toward 1 in that in their derivatives the head-tail orientation of the 1-MeC(-) nucleobases is retained. In [Pt(2,2'-bpy)(1-MeC(-))(2){Pd(2,2'-bpy)}(2)](NO(3))(4)·10H(2)O (4), both (2,2'-bpy)Pd(II) entities are pairwise bonded to N4H(-) and O2 sites of the two 1-MeC(-) rings, whereas in [Pt(2,2'-bpy)(1-MeC(-))(2){Pd(tmeda)}(2)(NO(3))](NO(3))(3)·5H(2)O (3) only one of the two (tmeda)Pd(II) units is chelated to N4H(-) and O2. The second (tmeda)Pd(II) is monofunctionally attached to a single N4H(-) site. On the basis of these established binding patterns, ways to the formation of mixed Pt/Pd complexes and possible intermediates are proposed. The methylene protons of the en ligand in 2 are special in that they display two multiplets separated by 0.64 ppm in the (1)H NMR spectrum.  相似文献   

5.
The coordination chemistries of the potential tetradentate ligands N,N'-bis(3,5-di-tert-butyl-2-hydroxyphenyl)ethylenediamine, H4[L1], the unsaturated analogue glyoxal-bis(2-hydroxy-3,5-di-tert-butylanil), H2[L2], and N,N'-bis(2-hydroxy-3,5-di-tert-butylphenyl)-2,2-dimethylpropylenediamine, H4[L3], have been investigated with nickel(II), palladium(II), and copper(II). The complexes prepared and characterized are [Ni(II)(H3L1)2] (1), [Ni(II)(HL2)2].5/8CH2Cl2 (2), [Ni(II)(L3**)] (3), [Pd(II)(L3**)][Pd(II)(H2L3) (4), and [Cu(II)(H2O)(L4)] (5), where (L4)2- is the oxidized diimine form of (L3)4- and (L3**)2- is the bis(o-iminosemiquinonate) diradical form of (L3)4-. The structures of compounds 1-5 have been determined by single crystal X-ray crystallography. In complexes 1 and 2, the ligands (H3L1)- and (HL2)- are tridentate and the nickel ions are in an octahedral ligand environment. The oxidation level of the ligands is that of an aromatic o-aminophenol. 1 and 2 are paramagnetic (mu(eff) approximately 3.2 mu(B) at 300 K), indicating an S = 1 ground state. The diamagnetic, square planar, four-coordinate complexes 3 and [Pd(II)(L3**)] in 4 each contain two antiferromagnetically coupled o-iminobenzosemiquinonate(1-) pi radicals. Diamagnetic [Pd(II)(H2L3)] in 4 forms an eclipsed dimer via four N-H.O hydrogen bonding contacts which yields a nonbonding Pd.Pd contact of 3.0846(4) A. Complex 5 contains a five-coordinate Cu(II) ion and two o-aminophenolate(1-) halves in (L4)2-. The electrochemistries of complexes 3 and 4a ([Pd(II)(L3**)] of 4) have been investigated, and the EPR spectra of the monocations and -anions are reported.  相似文献   

6.
The complexes of Pd(II) with ammonium pyrrolidinedithiocarbamate (APDC), N,N′-diethylthiourea (DET) and dimethylglyoxime (DMG) were prepared and imprinted into a polymeric network. The ion-imprinted polymers (IIPs) were synthesized by copolymerization of 4-vinylpyridine (VP) and styrene as functional monomers and divinylbenzene as a cross-linking agent in the presence of 2,2-azo-bis-isobutyronitrile as an initiator. The influence of sample volume, pH and flow rate on the extraction efficiency of Pd was studied under dynamic conditions. Pd(II) could be quantitatively retained on each of the studied sorbents at the pH range of 0.5 to 1.0, and eluted with an acidic solution of thiourea. The polymer with the imprinted Pd-DET-VP complex offered the highest selectivity for Pd(II) over certain matrix components, such as Pt(IV), Ni(II) and Cu(II). The low sample pH is an important advantage of the separation procedure, as it allows an effective separation of Pd(II) from complex environmental matrices. The developed separation method was successfully applied to the electrothermal atomic absorption spectrometric (ETAAS) determination of trace amounts of Pd in tap and river water, grass, and certified platinum ore (CRM SARM 7 and SARM 76) samples with reproducibility below 6.5%. The detection limit for Pd(II) obtained by ETAAS after the pre-concentration on Pd-DET-VP polymer was 0.012?ng?mL?1 for 75?mL sample volume.  相似文献   

7.
The solvent-free conditions were employed to synthesise symmetrical Schiff base ligand from 2,6-diaminopyridine with cinnamaldehyde in (1 min) with a fair yield utilizing formic acid as a catalyst. Through coordination chemistry, new heteroleptic complexes of Cu(II), Co(II), Ni(II), Pt(II), Pd(II) and Zn(II) were achieved from Schiff base as a primary chelator (L1) and 2,2′‐bipyridine (2,2′-bipy) as a secondary chelator (L2). The prepared compounds have been characterized by elemental analysis, molar conductivity, magnetic susceptibility, FTIR, 1H NMR, UV–visible, mass spectrometry, and thermal gravimetric analysis, and screened in vitro for their potential as antibacterial activity by the agar well diffusion method. The metal complexes were formulated as [M (L1) (L2) (X)] YnH2O, L1 = Schiff base, L2 = 2,2′-bipy, (M = Cu(II), Co(II), Zn(II), Y = 2NO3, n = 1), (M = Ni(II), X = 2H2O, Y = 2NO3, n = 0) and (M = Pd(II) Pt(II), Y = 2Cl, n = 0). Both L1 and L2 act as a neutral bidentate ligand and coordinates via nitrogen atoms of imine and 2,2′-bipy to metal ions. The metal complexes were found to be electrolytic, with square-planar heteroleptic Cu(II), Co(II), Pt(II), and Pd(II) chelates and octahedral Ni(II) complex. As well as tetrahedral geometry, has been proposed for the complex of Zn(II). Furthermore, the biological activity study revealed that some metal chelates have excellent activity than Schiff base when tested against Gram-negative and Gram-positive strains of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Finally, it was found that the Zn(II) and Pd(II) complexes were more effective against both types of bacteria tested than the imine and other metal complexes.  相似文献   

8.
Complexation reactions of 5,10,15,20-tetraphenyltetrabenzoporphyrin and transmetallation of its cadmium complex with nickel(II) acetate, Ni(II), Pd(II), and Pt(II) chlorides in dimethylformamide and phenol have been studied. The corresponding Ni(II), Pd(II), and Pt(II) porphyrinates have been synthesized. PtIVBr2 porphyrinate has been obtained by the treatment of Pt(II) 5,10,15,20-tetraphenyltetrabenzoporphyrinate with bromine in chloroform. The obtained compounds have been characterized by elemental analysis, electronic absorption and 1H NMR spectroscopy and mass spectrometry.  相似文献   

9.
The novel pyridine-containing 14-membered macrocycle 3,11-dithia-7,17-diazabicyclo[11.3.1]heptadeca-1(17),13,15-triene (L), which contains an N2S2 donor set, was synthesized, and its protonation behavior was studied by absorption titration with CH3SO3H. The reaction of L with Pd(II) was studied spectroscopically, and the square-planar complex [Pd(L)](BF4) was isolated and characterized. The reactions between L and NiX2 x 6 H2O (X = BF4, ClO4) in ethanol or acetonitrile afforded the octahedral complexes [Ni(CH3CN)(H2O)(L)](X)2 and [Ni(H2O)2(L)](X)2, respectively. The square-planar complexes [Ni(L)](X)2 were obtained by heating these octahedral complexes. Spectrophotometric titrations of [Ni(L)](BF4)2 were performed with neutral and negatively charged ligands. The color of nitromethane solutions of this square-planar complex turns from red to cyan, purple, blue, yellow-green, and pink following addition of halides, acetonitrile, water, pyridine, and 2,2'-bipyridine, respectively. X-ray structural analyses were carried out on the {[Ni(ClO4)(H2O)(L)][Ni(H2O)2(L)]}(ClO4)3, [Ni(CH3CN)(H2O)(L)](ClO4)2, [{Ni(L)}2(mu-Cl)2](ClO4)2, and [{Ni(L)}2(mu-Br)2]Br2 x 2 CH3NO2 complexes.  相似文献   

10.
Summary The chromatographic mobility of 21H, 23H-porphine and its Ni(II), Cu(II), Zn(II) and Pd(II) complexes were investigated by high-performance thin-layer chromatography on an octadecyl-bonded, silica gel plate with various polar organic solvents including alcohols, acetonitrile, dimethylsulfoxide and propylenecarbonate. The mobility generally decreases according to the central metal ion of the complex as follows: Zn(II)>(free porphine)>Ni(II)>Pd(II)>Cu(II). Methanol is a good choice of solvent for the separation of these metal porphine complexes. Successful separation of porphine and the four metal complexes is accomplished within 13 min on a LiChrosorb RP-18 column with methanol eluent.  相似文献   

11.
The synthesis and structure, as well as the chemical and electrochemical characterisation of two new nu(3)-octahedral bimetallic clusters with the general [Ni(44-x)M(x)(CO)(48)](6-) (M = Pd, x = 8; M = Pt, x = 9) formula is reported. The [Ni(35)Pt(9)(CO)(48)](6-) cluster was obtained in reasonable yields (56 % based on Pt) by reaction of [Ni(6)(CO)(12)](2-) with 1.1 equivalents of Pt(II) complexes, in ethyl acetate or THF as the solvent. The [Ni(36)Pd(8)(CO)(48)](6-) cluster was obtained from the related reaction with Pd(II) salts in THF, and was isolated only in low yields (5-10 % based on Pd), mainly because of insufficient differential solubility of its salts. The unit cell of the [NBu(4)](6)[Ni(35)Pt(9)(CO)(48)] salt contains a substitutionally Ni-Pt disordered [Ni(24)(Ni(14-x)Pt(x))Pt(6)(CO)(48)](6-) (x = 3) hexaanion. A combination of crystal and molecular disorder is necessary to explain the disordering observed for the Ni/Pt sites. The unit cell of the corresponding [Ni(36)Pd(8)(CO)(48)](6-) salt contains two independent [Ni(30)(Ni(8-x)Pd(x))Pd(6)(CO)(48)](6-) (x = 2) hexaanions. The two display similar substitutional Ni-Pd disorder, which probably arises only from crystal disorder. The structure of [Ni(36)Pd(8)(CO)(48)](6-) establishes the first similarity between the chemistry of Ni-Pd and Ni-Pt carbonyl clusters. A comparison of the chemical and electrochemical properties of [Ni(35)Pt(9)(CO)(48)](6-) with those of the related [Ni(38)Pt(6)(CO)(48)](6-) cluster shows that surface colouring of the latter with Pt atoms decreases redox as well as protonation propensity of the cluster. In contrast, substitution of all internal Pt and two surface Ni with Pd atoms preserves the protonation behaviour and is only detrimental with respect to its redox aptitude. A qualitative rationalisation of the different surface-site selectivity of Pt and Pd, based on distinctive interplays of M--M and M--CO bond energies, is suggested.  相似文献   

12.
Bhaskare CK  Devi S 《Talanta》1978,25(9):544-545
Furoin thiosemicarbazone (FTS) reacts with Ni(II), Pd(II) and Cu(II) in aqueous medium, giving yellow solutions at pH 9, 6 and 3 respectively. The complexes have absorption maxima at 360 nm for Ni(II) and Pd(II) and 355 nm for Cu(II). At these wavelengths the reagent absorbance is negligible. The molar absorptivities are 1.54 x 10(4) [Ni(FTS)(2)], 1.98 x 10(4) [Pd(FTS)(2)] and 1.45 x 10(4) 1.mole(-1).cm(-1) (CuFTS). Beer's law is valid up to 4, 5 and 3 ppm for Ni, Pd and Cu respectively. The apparent instability constant of the Ni-FTS system is found to be 6.5 x 10(-11), of the Cu-FTS system 7.1 x 10(-7) and of the Pd-FTS system 3 x 10(-12) at the recommended pH values. The effect of various ions is reported.  相似文献   

13.
Kinetic methods for palladium (0.1–0.8 mg l?1) and nickel (0.1?0.7 mg l?1) are based, respectively, on the uncatalyzed bromate oxidation of 2,2′-dipyidylketone hydrazone (DPKH) in acidic media and of dipyridylglyoxal hydrazone (DPDKH) in basic media, to yield fluorescent products. Complexation of DPKH and DPDKH by Pd(II) and Ni(II), respectively, causes a decrease in ligand concentration and thus in reaction rate, which can be related to the concentration of metal. The method for palladium is relatively free from interferences.  相似文献   

14.
Complexes of Mn(II), Co(II), Ni(II), Pd(II) and Pt(II) were synthesized with the macrocyclic ligand, i.e., 2,3,9,10-tetraketo-1,4,8,11-tetraazacycoletradecane. The ligand was prepared by the [2 + 2] condensation of diethyloxalate and 1,3-diamino propane and characterized by elemental analysis, mass, IR and 1H NMR spectral studies. All the complexes were characterized by elemental analysis, molar conductance, magnetic susceptibility measurements, IR, electronic and electron paramagnetic resonance spectral studies. The molar conductance measurements of Mn(II), Co(II) and Ni(II) complexes in DMF correspond to non electrolyte nature, whereas Pd(II) and Pt(II) complexes are 1:2 electrolyte. On the basis of spectral studies an octahedral geometry has been assigned for Mn(II), Co(II) and Ni(II) complexes, whereas square planar geometry assigned for Pd(II) and Pt(II). In vitro the ligand and its metal complexes were evaluated against plant pathogenic fungi (Fusarium odum, Aspergillus niger and Rhizoctonia bataticola) and some compounds found to be more active as commercially available fungicide like Chlorothalonil.  相似文献   

15.
The 3-phenyl-2-(pyridin-2-yl)oxazolidine ligand (ppo) was synthesised and its coordination behaviour regarding Ni(II) and Pd(II) centres was studied. The reaction with K(2)PdCl(4) affords [Pd(N,N'-ppo)Cl(2)] (1), in which ppo binds to palladium via the pyridyl nitrogen and the oxazolyl nitrogen atoms. On the contrary, reaction with NiCl(2)·6H(2)O produces [Ni(N,O-ppo)(2)Cl(2)] (2), in which two ppo ligands are coordinated via the pyridyl nitrogen and the oxygen atom of the oxazolidine ring. The X-ray diffraction analysis of the complexes confirms a square planar geometry for Pd(II) in 1 and an octahedral configuration around Ni(II) in 2, which, to the best of our knowledge, represents the first reported example of a structurally characterised nickel-oxazolidine compound. In addition, both complexes prove to be active catalysts under mild conditions in the aza-Michael reaction of (E)-4-phenylbut-3-en-2-one (benzalacetone) with aliphatic amines.  相似文献   

16.
A new fluorine-containing tetradentate ligand 1,2-bis(5,5,5-trifluoro-4-oxopent-2-en-2-amino)benzene and its complexes with Ni(II), Pd(II) and Cu(II) are characterized by single crystal X-ray diffraction. It is found that the enaminoketone fragments of the ligand are identical in bond lengths and angles; they are almost planar, and make the angles of 51.3° to the plane of the benzene ring. The structures of Ni(II), Pd(II), and Cu(II) complexes are similar and have a saddle-shape configuration. The metal ions have square planar coordination and are located almost in the center of the N2O2 square. The average M-N bond lengths are longer than M-O ones by 0.014 Å and 0.034 Å for the Ni(II) and Cu(II) complexes respectively, while in the Pd(II) complex, M-O is longer than M-N by 0.029 Å. The average chelate angles N-M-O in the complexes are: N-Ni-O 95.12°; N-Pd-O 95.68°; N-Cu-O 93.88°.  相似文献   

17.
A quantitative synergetic extraction procedure for cobalt, nickel and palladium from thiocyanate aqueous solutions into methyl isobutyl ketone (MIBK), containing 2-benzoylpyridine-2-pyridylhydrazone (BPPH), was studied by flame atomic absorption spectrometry (FAAS) and molecular absorption spectrometry (UV-VIS). Using FAAS, linear calibration graphs were obtained from 0.0-0.5 mg l(-1) Co(II), 0.0-1.5 mg l(-1) Ni(II) and 0.0-2.0 mg l(-1) Pd(II). The reproducibilities were s(r,Co(II))=2.0%, s(r,Ni(II))=1.0% and s(r,Pd(II))=1.3% and the limits of detection were c(L,Co(II))=0.004 mg l(-1), c(L,Ni(II))=0.009 mg l(-1) and c(L,Pd(II))=0.012 mg l(-1). Using UV-VIS method the linear calibration graphs were 0.0-0.5 mg l(-1) for Co(II), 0.0-1.0 mg l(-1) for Ni(II) and 0.0-2.0 mg l(-1) for Pd(II). The reproducibilities were s(r,Co(II))=1.3%, s(r,Ni(II))=1.7% and s(r,Pd(II))=1.0% and the limits of detection were c(L,Co(II))=0.001 mg l(-1), c(L,Ni(II))=0.004 mg l(-1) and c(L,Pd(II))=0.002 mg l(-1). The extraction method is almost free from interferences and has been successfully applied to the determination of cobalt, nickel and palladium in dental alloys.  相似文献   

18.
Jiang N  Chang X  Zheng H  He Q  Hu Z 《Analytica chimica acta》2006,577(2):225-231
A new Ni(II)-imprinted amino-functionalized silica gel sorbent with excellent selectivity for nickel(II) was prepared by an easy one-step reaction by combining a surface imprinting technique for selective solid-phase extraction (SPE) of trace Ni(II) in water samples prior to its determination by inductively coupled plasma atomic emission spectrometry (ICP-AES). Compared with non-imprinted polymer particles, the ion-imprinted polymers (IIPs) had higher selectivity and adsorption capacity for Ni(II). The maximum static adsorption capacity of the ion-imprinted and non-imprinted sorbent for Ni(II) was 12.61 and 4.25 mg g−1, respectively. The relatively selective factor (αr) values of Ni(II)/Cu(II), Ni(II)/Co(II), Ni(II)/Zn(II) and Ni(II)/Pd(II) were 45.99, 32.83, 43.79 and 28.36, which were greater than 1. The distribution ratio (D) values of Ni(II)-imprinted polymers for Ni(II) were greatly larger than that for Cu(II), Co(II), Zn(II) and Pd(II). The detection limit (3σ) was 0.16 ng mL−1. The relative standard deviation of the method was 1.48% for eight replicate determinations. The method was validated by analyzing two certified reference materials (GBW 08618 and GBW 08402), the results obtained is in good agreement with standard values. The developed method was also successfully applied to the determination of trace nickel in plants and water samples with satisfactory results.  相似文献   

19.
Asymmetric alkylation of the 3,4-dimethyl-5-phenyl-2,2'-biphospholyl anion with the (2R,4R)-(-)-pentaneditosylate leads to a new chirally flexible 2,2'-biphosphole ligand as a mixture of three diasteroisomers. By complexation with Pd(II), a chirality control occurs to afford enantiopure Pd complex.  相似文献   

20.
Reactions between the mononuclear mixed-nucleobase complex [Pt(en)(UH-N1)(CH2-N3)]+ (1; en: ethylenediamine; UH-N1: uracil monoanion bonded through the N1 atom; CH2-N3: neutral cytosine bonded through the N3 atom) and [Pd(II)(en)] or [Pd(II)(2,2'-bpy)] (2,2'-bpy: 2,2'-bipyridine) lead to libraries of compounds of different stoichiometries and different connectivities. In these compounds, the palladium entity binds to or cross-links either the N3 sites of uracil and/or the N1 sites of cytosine, following deprotonation of these positions to give uracil dianions (U) and cytosine monoanions (CH). Cyclic species, which can be considered as metallacalix[n]arenes, have been detected in several cases, with n being 4 and 8. The complexity of the compounds formed not only results from the possibility of the two different nucleobases in building block 1 engaging in different connectivities with the Pd entities, but also from the potential for the formation of oligomers of different sizes and different conformations; in the case of cyclic tetranuclear Pt(2)Pd(2) species, this can, in principle, lead to the various arrangements (cone, partial cone, 1,2-alternate, 1,3-alternate) known from calix[4]arene chemistry. A further complication arises from the fact that, depending on the mutual orientation of the exocyclic groups of the two nucleobases (O2 and O4 of uracil, O2 and N4 of cytosine), these sites can be engaged in additional chelation of [Pd(II)(en)] and [Pd(II)(2,2'-bpy)]. Thus, penta-, hexa-, and octanuclear complexes, Pt(2)Pd(3), Pt(2)Pd(4), and Pt(2)Pd(6), derived from cyclic Pt(2)Pd(2) tetramers have been isolated and characterized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号