首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Korkisch J  Gross H 《Talanta》1973,20(11):1153-1165
A method is described for the determination by atomic-absorption spectrophotometry of vanadium and molybdenum, up to the milligram level, in samples of yellow cake, uranium-bearing minerals and geochemical standards. After attack with acids these two elements are separated from each other and from matrix elements by means of anion-exchange in 6M hydrochloric acid on the strongly basic anion-exchange resin Dowex 1, X8 (chloride form). Vanadium is unadsorbed and passes into the effluent while molybdenum is adsorbed on the resin. For the elution of molybdenum a mixed aqueous-organic solvent system consisting of methanol and 6M hydrochloric acid (9: 1 v/v) is used. After evaporation of the 6M hydrochloric acid effluent and of the mixed aqueous-organic eluate vanadium and molybdenum are determined by atomic-absorption spectrophotometry. The method was tested by analysing numerous samples with contents ranging from a few ppm to milligram amounts of vanadium and molybdenum. For comparison, the concentrations of these two elements were determined in a large number of samples by spectrophotometric and titrimetric procedures. In all cases very good agreement of results was obtained.  相似文献   

2.
A method is described for the determination of Mn, Cu, Co, Zn, Cd, Pb and U in samples of manganese nodules. After dissolution of the sample in concentrated hydrochloric acid, the elements are adsorbed on a column of the strongly basic anion-exchange resin Dowex 1 from a medium consisting of 50 % (v/v) hexone, 40 % (v/v) isopropanol and 10 % (v/v) 12 M hydrochloric acid. After removal of iron by washing the resin bed with a mixture of the same composition, 6 M hydrochloric acid is passed through the column to elute Mn, Cu, Co, and Pb, and then 1 M hydrochloric acid and 2 M nitric acid to elute Zn, Cd and U. In the eluates the elements are determined by atomic-absorption spectrometry except for uranium which is determined by fluorimetry. The method was used successfully for the determination of mg and p.p.m. quantities of Mn, Cu, Co, Zn, Cd, Pb and U in 17 samples of manganese nodules from the Pacific Ocean.  相似文献   

3.
J. Korkisch  A. Sorio 《Talanta》1975,22(3):273-279
A method is described which makes possible the separation of lead from natural waters at the ppM level, and its final determination by spectrophotometry or atomic absorption. The sample is made 0.15M in hydrobromic acid, filtered, and passed through Dowex 1 X8 (bromide form). The lead is sorbed on the resin and most of the other elements present are separated from it. The lead is eluted with 6M hydrochloric acid and determined by the dithizone method or by atomic-absorption. The method was used to determine lead in drinking water and water from the Danube, lead concentrations in the range 2–14 ppM being found.  相似文献   

4.
Korkisch J  Hübner H 《Talanta》1976,23(4):283-288
A method is described for the determination of uranium in minerals and rocks by spectrophotometry and fluorimetry. After treatment of the sample with hydrochloric acid, uranium is separated from matrix elements by adsorption on a column of the strongly basic anion-exchange resin Dowex 1 x 8 from an organic solvent system consisting of IBMK, tetrahydrofuran and 12M hydrochloric acid (1:8:1 v v ). Following removal of iron, molybdenum and co-adsorbed elements by washing first with the organic solvent system and then with 6M hydrochloric acid, the uranium is eluted with 1M hydrochloric acid. In the eluate, uranium is determined by means of the spectrophotometric arsenazo III method or fluorimetrically. The suitability of the method for the determination of both trace and larger amounts of uranium was tested by analysing numerous geochemical reference samples with uranium contents in the range 10(-1)-10(4) ppm. In practically all cases very good agreement of results was obtained.  相似文献   

5.
A method is described for the determination of vanadium and molybdenum in samples of tap and bottled mineral water. After acidification with citric acid the water sample is heated to about 80°C to remove CO2; sodium citrate and ascorbic acid are added and the resulting solution of pH 3 is passed through a column of the strongly basic anion-exchange resin Dowex 1-X8 (citrate form) on which both vanadium and molybdenum are adsorbed as anionic citrate complexes. Vanadium is eluted with 6 M hydrochloric acid; molybdenum is recovered with 2 M perchloric acid-1 M hydrochloric acid. Vanadium and molybdenum are determined in the eluates by atomic-absorption spectrometry. The samples analysed contained 0.1–0.9 μg l?1 vanadium and 0.2–13 μg l?1 molybdenum.  相似文献   

6.
A method is described for the determination of uranium and thorium in manganese nodules. After dissolution of the sample in a mixture of perchloric and hydrofluoric acids, uranium is adsorbed on the strongly basic anion-exchange resin Dowex 1 (chloride form) from 6 M hydrochloric acid. The effluent is evaporated and the residue is taken up in 7 M nitric acid—0.25 M oxalic acid; thorium is then isolated quantitatively by anion-exchange on Dowex 1 (nitrate form). Thorium is eluted with 6 M hydrochloric acid and determined spectrophotometrically by the arsenazo III method. Uranium is eluted from the resin in the chloride form with 1 M hydrochloric acid and then separated from iron, molybdenum and other co-eluted elements on a column of Dowex 1 (chloride form); the medium consists of 50% (v/v) tetrahydrofuran, 40% (v/v) methyl glycol and 10% (vv) 6 M hydrochloric acid. After removal of iron and molybdenum by washing the resin with a mixture of the same composition and with pure aqueous 1 M hydrochloric acid, the adsorbed uranium is eluted with 1 M hydrochloric acid and determined by fluorimetry. The method was used successfully for the determination of ppm-quantities of uranium and thorium in 60 samples of manganese nodules from the Pacific Ocean.  相似文献   

7.
Vijan PN  Sadana RS 《Talanta》1980,27(4):321-326
Simultaneous presence of copper and nickel in potable waters interferes with the determination of lead at trace levels by the hydride-atomic-absorption spectrophotometric method. This interference is eliminated by co-precipitating lead with manganese dioxide from acidic solution. The precipitate is dissolved in 0.85% nitric acid and analysed by the automated hydride-atomic-absorption method. This method has been applied to 22 representative water samples and results compared with those obtained by using differential pulse anodic-stripping voltammetry, flame atomic-absorption and graphite-furnace atomic-absorption spectrophotometry. The precision of the three methods is reported and their accuracy checked by the analysis of reference standard water samples. The sensitivity of the three methods is of the order of 1 mug/l., compared to 100 mug/l. for flame atomic-absorption. The merits of each method are discussed.  相似文献   

8.
Steinnes E 《Talanta》1977,24(2):121-122
A radiochemical neutron-activation method for the determination of cadmium in soils is presented. The irradiation is carried out in a neutron flux with a high epithermal component, taking advantage of the high ratio of the resonance-activation integral to the thermal-neutron cross-section for (114)Cd to obtain an increased sensitivity. The irradiated samples are decomposed with hydrofluoric acid-nitric acid and cadmium is separated by anion-exchange. Zinc may also be determined. There is good agreement with results obtained by atomic-absorption spectrophotometry based on solvent extraction separation of cadmium.  相似文献   

9.
Ficklin WH 《Talanta》1983,30(5):371-373
The predominant species of arsenic in ground water are probably arsenite and arsenate. These can be separated with a strong anion-exchange resin (Dowex 1 x 8; 100-200 mesh, acetate form) in a 10 cm x 7 mm column. Samples are filtered and acidified with concentrated hydrochloric acid (1 ml per 100 ml of sample) at the sample site. Five ml of the acidified sample are used for the separation. At this acidity, As(III) passes through the acetate-form resin, and As(V) is retained. As(V) is eluted by passage of 0.12M hydrochloric acid through the column (resulting in conversion of the resin back into the chloride form). Samples are collected in 5-ml portions up to a total of 20 ml. The arsenic concentration in each portion is determined by graphite-furnace atomic-absorption spectrophotometry. The first two fractions give the As(III) concentration and the last two the As(V) concentration. The detection limit for the concentration of each species is 1 mug l .  相似文献   

10.
Hubert AE  Chao TT 《Talanta》1985,32(7):568-570
A rock, soil, or stream-sediment sample is decomposed with hydrofluoric acid, aqua regia, and hydrobromic acid-bromine solution. Gold, thallium, indium and tellurium are separated and concentrated from the sample digest by a two-step MIBK extraction at two concentrations of hydrobromic add. Gold and thallium are first extracted from 0.1M hydrobromic acid medium, then indium and tellurium are extracted from 3M hydrobromic acid in the presence of ascorbic acid to eliminate iron interference. The elements are then determined by flame atomic-absorption spectrophotometry. The two-step solvent extraction can also be used in conjunction with electrothermal atomic-absorption methods to lower the detection limits for all four metals in geological materials.  相似文献   

11.
Wood EJ  Gonzalez R  Blanco JA  Rucci AO 《Talanta》1976,23(6):473-474
A procedure is described for the determination of lead in different types of propellant samples by atomic-absorption spectrophotometry. The method is simple, rapid and avoids the use of strong acids and prior sample digestion. Complete lead extraction is achieved with 10% acetic acid. The results obtained by the proposed method are compared with those obtained by the gravimetric chromate method. The variation of the efficiency of lead extraction with sample type is discussed.  相似文献   

12.
Chong C 《Talanta》1986,33(1):91-94
A simple atomic-absorption spectrophotometry method is described for the determination of silver, bismuth, cadmium, copper, iron, nickel and zinc in lead- and tin-base solders and white-metal bearing alloys, with use of a single sample solution. The sample is dissolved in a mixture of hydrobromic acid and bromine, then fumed with sulphuric acid. The lead sulphate is dissolved in concentrated hydrochloric acid. The method is particularly suitable for the determination of silver and bismuth, which are co-precipitated with lead sulphate. The other elements can also be determined after removal of the lead sulphate by filtration.  相似文献   

13.
A chelating resin, cross-linked chitosan modified with the glycine moiety (glycine-type chitosan resin), was developed for the collection and concentration of bismuth in aquatic samples for ICP-MS measurements. The adsorption behavior of bismuth and 55 elements on glycine-type chitosan resin was systematically examined by passing a sample solution containing 56 elements through a mini-column packed with the resin (wet volume; 1 ml). After eluting the elements adsorbed on the resin with nitric acid, the eluates were measured by ICP-MS. The glycine-type chitosan resin could adsorb several cations by a chelating mechanism and several oxoanions by an anion-exchange mechanism. Especially, the resin could adsorb almost 100% Bi(III) over a wide pH region from pH 2 to 6. Bismuth could be strongly adsorbed at pH 3, and eluted quantitatively with 10 ml of 3 M nitric acid. A column pretreatment method with the glycine-type chitosan resin was used prior to removal of high concentrations of matrices in a seawater sample and the preconcentration of trace bismuth in river water samples for ICP-MS measurements. The column pretreatment method was also applied to the determination of bismuth in real samples by ICP-MS. The LOD of bismuth was 0.1 pg ml(-1) by 10-fold column preconcentration for ICP-MS measurements. The analytical results for bismuth in sea and river water samples by ICP-MS were 22.9 +/- 0.5 pg ml(-1) (RSD, 2.2%) and 2.08 +/- 0.05 pg ml(-1) (RSD, 2.4%), respectively.  相似文献   

14.
Korkisch J  Sorio A  Steffan I 《Talanta》1976,23(4):289-294
A method is described for the atomic-absorption determination of beryllium in liquid environmental samples after separation by solvent extraction and cation-exchange. The beryllium is first isolated from natural waters and beverages by chloroform extraction of its acetylacetonate from a solution at pH 7 and containing EDTA. The chloroform extract is then mixed in the ratio of 3:6:1 with tetrahydrofuran and methanol containing nitric acid, and passed through a column of Dowex 50 x 8 (H(+)-form). After removal of acetylacetone, chloroform and tetrahydrofuran by washing the resin bed with methanol-HNO(3), beryllium is eluted with 6M hydrochloric acid and determined by atomic-absorption spectroscopy. The method was successfully applied to determine beryllium in tap-, river- and sea-water samples, mineral waters and wines. Beryllium contents in the range from < 0.01 to 2.3 microg/l were found in these materials.  相似文献   

15.
Elemental selenium and tellurium, and gaseous inorganic forms of Se(IV), Se(VI), Te(IV) and Te(VI) have been determined after their adsorption on gold-coated beads. After leaching, with water and dilute hydrochloric and nitric acids, the different chemical species in each acid fraction were separated with an anion-exchange resin (Bio-Rad AG-1X8) and a cation-exchange resin (Amberlite IR-120 Plus) by varying the acidity of the leaching agent. Subsequent analysis was by graphite-fumace atomic-absorption spectrometry. The lower detection limit for Se and Te was 0.03 ng/M(3) with a precision of +/- 5%. The average amounts of selenium in interior and exterior air samples were about 4.73 and 1.93 ng/m(3) respectively. For tellurium the corresponding values were about 0.78 and 0.24 ng/m(3).  相似文献   

16.
Lead is separated from gram amounts of Zn, In, Ga, Fe(III), Cu(II), Co(II), Mn(II), U(VI), Ca and Ba on a short column of AG1-X4 anion-exchange resin in the bromide form. Lead is retained from 0.2 M hydrobromic acid while the other elements are eluted completely with this reagent. Lead is then eluted with 2 M nitric acid. Separations are sharp and quantitative and, especially for gram amounts of zinc, much better than those obtained with an 8% cross-linked resin; up to 10 mg of lead can be separated from 2 g of zinc. Results are given for synthetic mixtures and lead is determined in several analytical grade chemicals.  相似文献   

17.
Strelow FW 《Talanta》1991,38(8):923-928
Traces and larger amounts of bismuth (up to 50 mg) can be separated from gram amounts of thallium, mercury, gold and platinum (up to 5 g) by sorption from a mixture of 0.1M hydrochloric acid and 0.4M nitric acid on a column containing just 3 g (8.1 ml) of AGMP-50, a macroporous cation-exchange resin. This resin retains bismuth much more strongly than does the usual microporous resin (styrene-DVB with 8% cross-linkage). Other elements are eluted with the same acid mixture as that used for sorption, and bismuth is finally eluted with 1.0M hydrochloric acid. Separations of bismuth are sharp and recoveries quantitative. Only microgram amounts of the other elements remain in the bismuth fraction. Amounts of bismuth as little as 5 mug have been separated from 5 g of thallium, and determined (r.s.d. = 2%) by flame atomic-absorption. Only 100-mug amounts of bismuth have been separated from gram amounts of mercury, gold, and platinum, but there is no reason to believe that smaller or larger amounts of bismuth cannot be separated from these elements and recovered with the same accuracy as that for the separation from thallium. The lower limit of the method is determination of 0.4 mug of bismuth in 10 ml of solution (0.004 absorbance). An elution curve, the relevant distribution coefficients and the results of analysis of synthetic mixtures and two practical samples [thallium metal and mercury(II) nitrate] are presented.  相似文献   

18.
Donaldson EM 《Talanta》1980,27(2):79-84
A simple and moderately rapid method for determining 0.001% or more of molybdenum in ores, iron and steel is described. After sample decomposition, molybdenum is separated from the matrix elements, except tungsten, by chloroform extraction of its alpha-benzoinoxime complex from a 1.75 M hydrochloric-0.13 M tartaric acid medium. Depending on the amount of tungsten present, molybdenum, if necessary, is back-extracted into concentrated ammonia solution and subsequently separated from coextracted tungsten by chloroform extraction of its xanthate complex from a 1.5M hydrochloric-0.13M tartaric acid medium. It is ultimately determined by atomic-absorption spectrophotometry, at 313.3 nm, in a 15% v/v hydrochloric acid medium containing 1,000 microg/ml of aluminium as the chloride, after evaporation of either extract to dryness with nitric, perchloric and sulphuric acids and dissolution of the salts in dilute ammonia solution.  相似文献   

19.
Donaldson EM 《Talanta》1984,31(6):443-448
An improved tribenzylamine extraction/atomic-absorption method for the determination of silver in ores, related materials and zinc process solutions is described. The method, which involves the separation of silver by a single methyl isobutyl ketone extraction of the tribenzylamine-silver bromide ion-association complex from ~ 0.5-2M sulphuric acid-0.14M potassium bromide, is simpler and more rapid than a previous method based on a triple chloroform extraction of the complex. Silver is stripped with 12M hydrochloric acid containing 1% thiourea as a complexing agent. Thiourea is destroyed with nitric and perchloric acids and silver is ultimately determined by atomic-absorption spectrophotometry in an air-acetylene flame, at 328.1 nm, in a 10% v v hydrochloric acid-1% v v diethylenetriamine medium. Cadmium and bismuth are partly co-extracted but do not interfere. Results obtained by this method are compared with those obtained previously by the tribenzylamine/chloroform extraction method and with those obtained by a direct acid-decomposition/atomic-absorption method.  相似文献   

20.
A method is described for the determination of cadmium, cobalt, copper, manganese, lead, uranium, and zinc in samples of natural waters. After acidification with hydrochloric acid the water sample is filtered and the diethyldithiocarbamates of the trace elements are isolated by extraction with acetone—chloroform (2:5) at pH 5. Following this preconcentration step the metal ions are adsorbed on a column of the strongly basic anion-exchange resin Dowex 1-X8 (chloride form) using as sorption solution a mixture (5:4:1, vv) of tetrahydrofuran, methyl glycol and 6 M hydrochloric acid. Successive elution is effected with 6 M hydrochloric acid (Co, Cu, Mn and Pb), 1 M hydrochloric acid (U) and 2 M nitric acid (Cd and Zn); the metal ions in the eluates are determined by atomic absorption spectrophotometry (except uranium, which is determined fluorimetrically). The procedure was used to determine the trace-metals in water and snow samples collected in Austria and to analyse a sample of sea water from the Adriatic Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号