首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly mono-sized poly(methyl methacrylate) (PMMA)/liquid crystal (LC) microcapsules having a mono-sized single LC domain were prepared by the solute codiffusion method and solvent evaporation. The size of the LC domain in the microcapsules could be controlled by the amount of LC introduced during the swelling stage. The electro-optical properties of the polymer dispersed liquid crystal (PDLC) prepared by using the microcapsules was highly improved. In particular, the threshold voltage was lowered and the switching behaviour with an applied electric field was sharpened drastically compared with PDLC prepared simply by solvent evaporation-induced phase separation.  相似文献   

2.
Highly mono-sized poly(methyl methacrylate) (PMMA)/liquid crystal (LC) microcapsules having a mono-sized single LC domain were prepared by the solute codiffusion method and solvent evaporation. The size of the LC domain in the microcapsules could be controlled by the amount of LC introduced during the swelling stage. The electro-optical properties of the polymer dispersed liquid crystal (PDLC) prepared by using the microcapsules was highly improved. In particular, the threshold voltage was lowered and the switching behaviour with an applied electric field was sharpened drastically compared with PDLC prepared simply by solvent evaporation-induced phase separation.  相似文献   

3.
Monodisperse poly(methyl methacrylate) (PMMA) particles containing various concentrations of stearyl methacrylate (SMA) were prepared, and a liquid crystal (LC) was swollen into the particles using a solute co-diffusion method (SCM). Phase separation behaviors between the polymer and LC were monitored by utilizing an optical and a polarized microscope (OM/POM). The monodisperse LC microcapsules were then applied to a polymer-dispersed liquid crystal (PDLC), and the electro-optical properties were investigated. As a result, the threshold and driving voltages were improved when the SMA content increased. The long alkyl chains of SMA in the capsules should exist at the interface of the LC and polymer resulting in an enhancement of phase separation between the polymer and LC, which largely influences the electro-optical properties of PDLC.  相似文献   

4.
Liquid crystals (LCs) encapsulated in monodisperse micron-sized polymer particles were prepared to control the size and size distribution of LC droplets in polymer-dispersed LCs. The poly(methyl methacrylate) (PMMA) seed particles were swollen with the mixture of liquid crystal, monomers (methyl methacrylate and styrene) and initiator by using a diffusion-controlled swelling method. A single LC domain was produced by the phase separation between PMMA and LC through polymerization. The optical microscopy and scanning electron microscopy showed that the particles are highly monodisperse with core–shell structure. Moreover, monodisperse LC core domains were confirmed from polarized optical microscope observations. The final particle morphology was influenced by the cross-linking of the seed particle. When linear PMMA particles, which are not cross-linked, were used as a seed, the microcapsules were distorted after annealing for a few days; however, in the case of cross-linked PMMA particles, the core–shell structure was sustained stably after annealing. Received: 22 November 2000 Accepted: 12 March 2001  相似文献   

5.
Highly mono-sized dye-doped liquid crystal (LC) microcapsules were prepared by the solute codiffusion method for application in photoswitchable devices. Azobenzene derivatives, which can be photoisomerized by irradiation with UV (366 nm) and visible (433 nm) light, were used as a photoresponsive dichroic dye. The microcapsules have a spherical shape and a single dye-doped LC domain. After UV light (366 nm) irradiation, PDLC films prepared using the microcapsules attained a photostationary state within 10 min and this state maintained stability. PDLC films made by employing a dichroic dye having electron donor and acceptor groups in the molecule showed especially good photoisomerization properties. The reversible trans-cis -photoisomerization occurred sharply by irradiating alternately with visible and UV light.  相似文献   

6.
Cholesteric liquid crystal (CLC) microcapsules for application in image storage media can be obtained via a diffusion-controlled polymerization method (DPM). To improve the swelling of the CLC seed particle, in poly(methylmethacrylate) (PMMA), a polymerizable acrylate based on a cholesterol moiety was synthesized and copolymerized with MMA to prepare the seed particle. As a result, monodispersed and CLC core/shell-structured microcapsules may be obtained. The resulting CLC microcapsules selectively, absorbed visible light at around 660 nm, and so appeared blue in the mesophase. Polymer dispersed cholesteric liquid crystal (PDCLC) cells were prepared using the CLC microcapsules, and were used as an image storage medium in reversible writing/erasing experiments.  相似文献   

7.
《Liquid crystals》2013,40(10):1253-1258
Highly mono-sized dye-doped liquid crystal (LC) microcapsules were prepared by the solute codiffusion method for application in photoswitchable devices. Azobenzene derivatives, which can be photoisomerized by irradiation with UV (366 nm) and visible (433 nm) light, were used as a photoresponsive dichroic dye. The microcapsules have a spherical shape and a single dye-doped LC domain. After UV light (366 nm) irradiation, PDLC films prepared using the microcapsules attained a photostationary state within 10 min and this state maintained stability. PDLC films made by employing a dichroic dye having electron donor and acceptor groups in the molecule showed especially good photoisomerization properties. The reversible trans-cis -photoisomerization occurred sharply by irradiating alternately with visible and UV light.  相似文献   

8.
The different fluorinated liquid crystal (LC) molecules doped to E8 were used as LC component to prepare polymer dispersed liquid crystal (PDLC) films. The mass fraction of the LC mixture is fixed 50.0 wt%. Results indicate that doping 8.0 wt% fluorinated LC molecule ME3CP to E8 significantly reduced the driving voltage of the PDLC films, and the driving voltage reduced with the rise of mass fraction of ME3CP. Besides, the terminal flexible chain length of the fluorinated LC molecule influenced the LC mixture properties based on E8, such as the dielectric anisotropy, birefringence and viscosity of the LC mixture, and the morphology and the electro-optical properties of PDLC films were controlled not only by the physical properties of the LC mixture, but also by the terminal flexible chain length of the fluorinated LC molecule .  相似文献   

9.
Polymer dispersed liquid crystals (PDLCs) using nematic liquid crystal and photo-curable polymer (NOA 65) were prepared by polymerisation-induced phase separation technique, in equal ratio (1:1) of polymer and liquid crystal (LC). We demonstrate that doping of small amount (0.125%, wt./wt.) of multiwall carbon nanotubes (CNTs) and orange azo dichroic dye in PDLC generously controlled the molecular orientation, dynamics of LC in droplet and size of droplets. The effects of multiwall CNTs and dye on PDLCs were studied in terms of transition temperature, droplet morphology, transmittance characteristic, contrast ratio and response time. The results exhibited that the values of the threshold electric fields were reduced from 8 V/µm (pure PDLC) to 1.18 and 1.72 V/µm, doped with multiwall CNTs and dye, respectively. The CNTs-doped PDLC shows faster switching response as compared with pure PDLC and dye-doped PDLC. However, dye-doped PDLC shows much higher contrast among all PDLC samples. Further, the results also illustrate that the birefringence value of LC in PDLCs was changed with doping of CNTs and dye.  相似文献   

10.
In this paper, polymer dispersed liquid crystals (PDLC) films with LC content as low as 40 wt% were prepared, and the electro‐optical properties were carefully investigated. To accomplish this, different (meth)acrylate copolymerizaiton monomers have been used. The electro‐optical properties and morphologies of the PDLC films were strongly influenced by the chemical structure of copolymerization monomers (hydroxypropyl methacrylate (HPMA), glycidyl methacrylate, hydroxypropyl acrylate) and their feed ratio. Lower driven voltage and higher contrast ratio were achieved when the PDLC films showed a morphology with suitably LC domain size. At high HPMA content, a thin polymer film was formed on the surface of PDLC samples, which is beneficial to decrease the total LC content in PDLC devices. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Effects of the content of fluorinated alkene-terminated liquid crystal (LC) molecules on the physical properties of the fluorinated alkene-terminated LC/E8 mixture were studied. The morphology and electro-optical properties as they doped in polymer-dispersed liquid crystal (PDLC) films were investigated. The detailed discussion of the obtained results is given. As a result, comparing with the physical properties of the series of LC mixtures with the same content of the analogous fully saturated compounds doped with E8, we find that the birefringence is significantly larger for the LC mixture with the alkene-terminated materials. Both fluorinated alkene-terminated LC molecules and the analogous fully saturated compounds doped with E8 reduce the driving voltage of PDLC films. Moreover, PDLC films with the fluorinated alkene-terminated LC molecules possessed higher contrast ratio and faster response time than that of the PDLC films prepared by adding the same mass fraction of the analogous fully saturated compounds. Thus, the ability to manipulate physical properties of LC mixture and electro-optical properties of PDLC films by changing the LC molecular structures may have future relevance for new LC structures design and applications of PDLC films.  相似文献   

12.
A polystyrene macro-iniferter was applied to control the alignment of liquid crystal molecules at the droplet wall of polymer dispersed liquid crystal (PDLC) films. The aspects of the alignment were monitored by observing the droplet in the PDLC film. With increasing the macro-iniferter polystyrene in the composition, the configuration of LC droplets changes from bipolar to radial. This is because the high concentration of the macro-iniferter polystyrene results in a small surface interaction between the LC and the polymer matrix, which favours the formation of radial configuration. The radial configuration was stable under our conditions. However, increasing the LC and the initiator concentrations resulted in the change from radial to bipolar.  相似文献   

13.
Through the ferroelectric nanoparticles of BaTiO3 (BTO) doping, the response time for the frequency modulation of the polymer-dispersed liquid crystal (PDLC) was improved. The BTO-doped PDLC cells were prepared by polymerisation induced phase separation (PIPS) process using UV light. The capacitance of the PDLC composites was measured with an impedance analyzer in the frequency range of 100 Hz–1 MHz at 1 V. The dynamic signal for the response time of the PDLC devices was monitored through a digital oscilloscope. The electro-optical properties of the PDLC were found to strongly depend on the doped BTO concentration. The BTO doping caused a large increase in the capacitance. The dielectric constants were drastically decreased in the samples with rather low BTO doping ratio at a high frequency. No outstanding difference in the rising time of the LC was observed in the BTO-doped PDLC device, but the falling time was significantly decreased from 0.334 to 0.094 s. The present results imply that the nanoparticle-doping technology could improve the electro-optical performance of the PDLC requiring fast response and frequency modulation, such as optical modulators and PDLC-hybrid electroluminescence device for flexible electronic devices.  相似文献   

14.
Dielectric measurement on a polymer-dispersed liquid crystal (PDLC) has been carried out in the frequency range from 10 Hz to 1 MHz and over the temperature range from 100 to 330 K. The PDLC sample was prepared by thermally induced phase separation of a 50% mixture by weight of commercially available liquid crystal E7 with PMMA and was sandwiched between two indium tin oxide glass plates separated by 40 μm spacers to form a “window.” The dielectric spectrum at low temperature (220–250 K) shows two distinct relaxation processes. Which occur at about 5 K lower than those in pure E7 having Tg ≈ 209 K. From differential scanning calorimetry data, the nematic transition of LC droplets in the PDLC is at 258 K, about 6 K lower than that of pure E7. The Maxwell-Wagner effect has been observed in the low-frequency side as the temperature increases from 280 to 320 K. At room temperature, the loss peak associated with the Maxwell-Wagner effect shows an amplitude dependence with excitation level but no frequency shift. The effect of different concentrations of E7 in PDLC samples at a given temperature shows the 50% mixture has the “fastest” relaxation frequency in such a dispersed heterogeneous system. © 1992 John Wiley & Sons, Inc.  相似文献   

15.
The reflectivity control device, initially developed for attitude control, is utilised to control the solar sail orbit by switching the states between absorption and specular reflection. Actually, the major parts of the device are the polymer-dispersed liquid crystal (PDLC) films. Here, PDLC films based on polyimide (PI) as polymer matrix and a low molecular weight LC can be prepared by the thermally induced phase separation (TIPS) method. The influences of cooling rate and the content of LC on the size and uniformity of LC droplets dispersed in a polymer matrix by a TIPS process were investigated. It was found that a fast cooling rate gave smaller droplet sizes and hence a more uniform distribution as compared to the ones produced under a slow cooling rate. If the LC content was increased, the droplet size would be increased. Furthermore, the effect of LC droplet size on the electro-optical properties of the PI-based PDLC films was discussed, such as transmittance, threshold voltage, driving voltage and contrast ratio (CR).  相似文献   

16.
To improve the degree of phase separation between polymer and LC in LC microcapsules, poly(methylmethacrylate-co-vinylacetate) substrate particles were acetalized by using aldehydes having a different chain length. LC microcapsules were prepared by the solute co-diffusion method (SCM). The phase separation behavior was evaluated with a differential scanning calorimeter (DSC). The degree of phase separation between LC and substrate particles modified with butyl aldehyde was relatively high in comparison with those modified with hexanal and octanal. This means that poly(vinylbutyral) (PVB) moiety in substrate particles causes the complete phase separation and a single LC domain formation. On the contrary, as the aldehyde chain lengthened, the phase separation of LC domain was inhibited.  相似文献   

17.
The dielectric properties of a polymer‐dispersed liquid crystal (PDLC), a liquid‐crystal (LC) mixture (BL036), and three polymer matrices of PN314 containing different amounts of BLO36 were determined over a range of frequencies and temperatures and, for the LC and PDLC, over a range of voltages leading to homeotropic alignment of the LC. The overall dielectric relaxation process was a weighted sum of contributions from (1) the primary (δ) process in the LC arising from the motions of the dipoles about the short molecular axis and (2) dipole motions in the polymer matrix. The dielectric spectra were determined as a function of frequency, temperature, and, when appropriate, applied voltage. An equivalent electrical circuit was used as a working model to describe the dielectric behavior of the PDLC in the absence and presence of applied voltages. Agreement between the dielectric data and this model was achieved if a portion of the LC phase at the interface was assumed to be immobile. The director order parameter for the LC component in the PDLC was determined from dielectric measurements as the material was aligned homeotropically in an applied electric field. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 1173–1194, 2001  相似文献   

18.
ABSTRACT

In this paper, polymer dispersed liquid crystal (PDLC) films based on epoxy-mercaptan system were prepared by thermal-initiated polymerization. The effects of the liquid crystal (LC) content, the proportion and the functionality of epoxy monomers on the polymer structures and electro-optical properties of the as-made PDLC films were investigated systematically. It was found that the morphologies of the polymer matrix can be altered from polymer meshes to polymer balls by increasing the LC content as well as the functionality of epoxy monomers. Accordingly, the electro-optical properties could be regulated by the morphologies of polymer networks. Especially, the as-made PDLC films with homogeneous porous structures exhibited the optimal electro-optical properties. Consequently, this work offers a meaningful approach to control the microstructures and optimize the electro-optical properties of PDLC films, which indeed can form a wonderful footstone for the wide application of PDLC.  相似文献   

19.
Polymer-dispersed liquid crystal (PDLC) systems based on polysulfone as carrying matrix and 4-cyano-4?-pentylbiphenyl (5CB) liquid crystal (LC) were obtained as thin transparent films. The PDLC films were prepared by solvent- and thermally induced phase separation methods, with various compositions in the two components. Information on the phase separation was obtained by polarised light optical microscopy, differential scanning calorimetry and scanning electron microscopy. The PDLC composites show well-defined droplets of submicrometric size, around 650 nm for a medium content of LC and around 250 nm for a low one. The droplets show a radial configuration and a homeotropic alignment of the LC molecules within. By contact angle measurement and surface free energy calculations, it was established that self-assembling of aliphatic units of the two composite components, at droplet interface, is the driving force of the homeotropic alignment. Moreover, these data indicated the potential biocompatibility of the studied composites. The photophysical behaviour shows a better light emission of the PDLCs containing bigger droplets.  相似文献   

20.
The kinetics of the polymerization induced phase separation of liquid crystal (LC)/monomer mixture has been investigated by means of depolarized light intensity technique and polarized light microscope (PLM). To examine the effect of the electric field, a DC electric field was applied across the mixtures during the phase separation process. The kinetic study indicates that the phase separation process is accelerated when the electric field is applied. The morphologies of the formed polymer dispersed liquid crystal (PDLC) films were observed by PLM. The electric field applied during the phase separation process yields the PDLC with small LC domains and fine morphologies. The clearing temperature (TNI) of the formed PDLC films was measured by the PLM and it is found that the TNI increases with the applied electric field intensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号