首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 214 毫秒
1.
Transient dynamics of allophycocyanin trimers and monomers are observed by using the pump-probe, transient absorption technique. The origin of spectral components of the transient absorption spectra is discussed in terms of both kinetics and spectroscopy. We find that the energy gap between the ground and excited states of the unexcited subunit of allophycocyanin monomer decreases via an interaction with another excited subunit. For allophycocyanin trimer, we find that the fast dynamics results from the fast internal conversion and the first excited state is the only one electronic state which can trap the final population.  相似文献   

2.
Resonance-enhanced coherent anti-Stokes Raman spectra are recorded for monomers and trimers of phycocyanin from three different cyanobacteria: Westiellopsis prolifica, Mastigocladus laminosus and Spirulina platensis. It is shown that upon aggregation from monomer to trimer the electronic structures of both the α84 and β84 chromophores are changed. The spectra of the trimers originating from S. platensis and M. laminosus are very similar to each other, but distinctly different from the spectrum of W. prolifica.  相似文献   

3.
Abstract— Resonance-enhanced coherent anti-Stokes Raman (CARS) spectra are reported for trimers of phycoerthrocyanin (PEC) dissolved in H2O and D2O. The CARS spectra are significantly different when recorded with pump wavelength either at 585 nm or 630 nm. By comparison of the 630 nm spectra with those of phycocyanin one can conclude that there is a change in the relative location of the lowest excited states of the β84 and β155 chromophores. Upon additional illumination with 514.5 nm laser light, only the spectra recorded with 585 nm pump wavelength change. This is in accordance with earlier observations that the phycoviolobilin chromophore of the a-subunit exhibits photochromic behavior. The changes in the CARS spectra provide evidence that it is the methine bridge between rings C and D that undergoes the geometrical changes. Furthermore, it is suggested that there are different types of photoinduced rearrangements operative and that the isomeric distribution is different in H2O and D2O.  相似文献   

4.
Abstract— Resonance Raman spectra of the chromophores of the cyanobacterial light-harvesting proteins phycocyanin (CPC) and allophycocyanin (APC) were recorded using 364 nm excitation. The1500–1700 cm-1 regions of these spectra were analyzed for the pH-induced structural changes accompanying the disruption of the native trimers into monomers as well as the progressive denaturation of these monomers. Computer-assisted decomposition of the 1642 cm-1 marker bands of these spectra yielded up to four components (named I-IV), the frequencies of which were constant within 5 cm-1 (CPC) and 10 cm-1 (APC). The relative intensities of two of these components, namely I and III, were sensitive to chromophore conformations. The previously reported downshift of the 1642 cm-1 band upon folding of the chromophores was shown to result from a weakening of component I and a concomitant enhancement of component III. Components I-IV had different relative intensity patterns in CPC and APC spectra. In particular, the higher relative intensity of component I at 1646 cm-1 indicated more extended average conformations of the chromophores in trimeric APC than in trimeric CPC. This difference likely resulted from the extra β-155 chromophore present in CPC. Component III was sizably active in RR spectra of monomelic APC but was not observed either in those of monomelic CPC or in those of trimeric APC and CPC. This indicated that, in APC monomers, chromophore(s) did not assume the native conformations found in the trimer, while monomer formation did not sizably alter the structures of the CPC chromophores.  相似文献   

5.
The core linker polypeptide Lc8.9 was isolated from Mastigocladus laminosus and purified on a preparative scale. A method for the reconstitution of allophycocyanin (AP)—linker complexes from isolated polypeptides was developed. The complex (αAPAP)3 Lc8.9 was reconstituted and compared to (αAPβAP) and (αAPβAP)3 by sucrose density gradient ultracentrifugation, absorption, fluorescence emission and circular dichroism spectroscopy. Differences in the spectra of reconstituted and of directly isolated AP complexes are discussed.  相似文献   

6.
Phycobiliproteinsarethelightharvestingpigmentsforphotosynthesisinalgaeandincludephycoerythrin,phycocyaninandallophycocyanin.Inredandbluealgae,differentkindsofphycobiliproteinsaswellaslinkerpolypeptidesformawellorgnizedsystemwithefficientfunctionsoflig…  相似文献   

7.
Abstract—Energy migration has been studied in C-phycocyanin (C-PC) rods with traps located in the terminal trimer disc, using the Monte Carlo method and the system of differential equations. It has been found that jump time statistics can be described by the function F = C(t/0>)exp(-t/ < to>), where C is the constant, t and < t0 > are, respectively, the exciton jump time and its averaged value for chromophores of the corresponding spectral types (α 84 , β84 or β155). The values < t0 > were calculated for the cases of C-PC monomers, trimers and higher associates.
The C-PC model, which consists of three hexamers with traps located in the β84 chromophores of the peripheral trimer, was examined. It was found that the total efficiency of excitation capturing, øtr, exceeds 90%, provided "local" quantum yield of energy trapping ø0 > 10%. The ø0 value influences both the excitation lifetime (τ) and the mean number of excitation jumps (Niump) before its conversion. For the ø0 = 100% and 10%, the corresponding lifetimes and numbers of jumps were calculated to be τ= 75 and 155 ps and Njump= 105 and 222 jumps, respectively.
The dynamics of excitation redistribution along the C-PC rods and the fluorescence kinetics for various ø0 values were calculated for C-PC chromophores excited by a +, and the correlation between these processes and ø 0 , was disclosed. The transient processes of excitation redistribution were shown to proceed within a time period t < 30 ps.  相似文献   

8.
The role of the back-biting reaction for generation of dimers and trimers on flash pyrolysis of poly(styrene-co-methacrylonitrile) by pyrolysis gas chromatography with the use of a Curie-point pyrolyzer has been investigated. Yields of each monomer, dimer, and trimer changed depending on the sequence distribution as well as on copolymer composition and pyrolysis temperature. The degradation behavior was explained by the competition between the back-biting reaction and depolymerization. It was found that the hybrid dimers and trimers were produced mainly by the back-biting reaction, which was followed by β-scission, and hence yields of hybrid dimers and trimers correctly reflect the sequence distribution of the copolymer of styrene and methacrylonitrile without interference from the second reaction of monomers regenerated in the flash pyrolysis. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2747–2753, 1999  相似文献   

9.
It is shown that the evolution of water vapor spectra in the 2500-5000 cm(-1) range recorded at 650 K and pressures up to 130 atms after subtraction of monomer contribution may be interpreted qualitatively well on the basis of experimental data on water dimer and trimer obtained from cold molecular beams and in He droplets. The proposed spectroscopic model considers water vapor as a mixture of nonideal monomers, dimers, and trimers at chemical equilibrium. The effect of line mixing is taken into account in the monomer spectrum modeling. Decomposition of the high temperature spectra allowed determining a dimer equilibrium constant that was compared with the previously known values. The contribution of water trimer is assessed. The performed analysis indicates that the number of bound dimers in water vapor is quite large, even at such a high temperature.  相似文献   

10.
Abstract— The effect of elimination of the 30, 33 and 9 kDa phycobilisome rod-linker polypeptides on rod length was examined by electron microscopy of phycobilisomes isolated from wild-type Synechococcus sp. strain PCC 7942 and from genetically engineered mutants with lesions in the genes encoding the rod-linker polypeptides. The maximum rod length in the absence of the 33 kDa linker polypeptide was two phycocyanin hexamers, whereas rods with up to five hexamers were found in the mutant strain lacking the 30 kDa linker polypeptide. Elimination of the 9 kDa linker polypeptide did not have a significant effect on rod length. Finally, mutants lacking either the 30 or 33 kDa rod-associated linker polypeptides had an increased number of rods that terminated with a phycocyanin trimer. These observations are discussed with respect to the role of the linker polypeptides in the biosynthesis of the rod substructure.  相似文献   

11.
Abstract— Absorption and fluorescence polarization spectra, as well as absolute fluorescence quantum yields, and lifetimes of phycobiliproteins separated from intact phycobilisomes of Porphyridium cruentum, Nostoc sp. and Fremyella diplosiphon were measured. Two different types of phycoerythrin, in addition to phycocyanin and allophycocyanin, were separated from both Porphyridium cruentum and Nostoc sp. phycobilisomes. They were distinguishable by the shape of their absorption spectra, values of fluorescence quantum yields and their limiting polarization. Phycobilisomes of Fremyella diplosiphon had a type of phycoerythrin that was different from the above kinds. By the use of fluorescence quantum yields and lifetime data, the values of natural lifetimes, the decadic molar extinction coefficients, as well as Förster's critical distances R 0 for excitation energy transfer, between phycobiliproteins in phycobilisomes, were estimated. The values obtained of Förster's critical distances indicate that for most efficient energy transfer from phycoerythrin to allophycocyanin, the outer layers of Porphyridium cruentum and Nostoc sp. phycobilisomes should be composed of bangiophycean, phycoerythrin and cyanophytan phycoerythrin-II respectively.  相似文献   

12.
Abstract— An improved method for phycobilisome isolation from a blue-green alga Nostoc sp. was developed using 1% Triton X-100. The phycobilisome preparations showed little fragmentation and had structures similar in size to those observed in thin sections of the organism. Phycobiliproteins isolated from phycobilisomes and examined by sodium dodecyl sulfate polyacrylamide gel electrophoresis, had subunits with the following molecular weights: phycoerythrin (PE), 20,000 and 16,900; phycocyanin (PC), 14,700 and 16,300; and allophycocyanin (APC), 14,000. Isoelectric focusing of each phycobiliprotein resulted in major bands isoelectric at the following pH values: PE, 4.43, 4.45; PC 4.32; APC, 4.38. Absorption spectra at -196°c showed maxima at 551 and 566 nm for PE; 598 and 631 nm for PC; and 590, 600, 629 and 650 nm for APC. Concentrated vs dilute difference spectra of phycobiliproteins showed increased absorption at 574 nm (PE), 630 nm (PC) and 651 nm (APC) suggesting that spectral changes resulted from aggregation. Fluorescence analysis of each phycobiliprotein and of intact phycobilisome preparations showed that energy absorbed by phycoerythrin is transferred to allophycocyanin, possibly by a resonance transfer mechanism. These observations support a model where allophycocyanin forms the base of the phycobilisome which is attached to the photosynthetic membrane. The next layer is assumed to be phycocyanin, which in turn is followed by a phycoerythrin layer that is the outermost layer (on the stroma side) of the phycobilisome.  相似文献   

13.
Within the framework of the Förster theory, the electronic excitation energy transfer pathways in the cyanobacteria allophycocyanin (APC) trimer and hexamer were studied. The associated physical quantities (i.e., excitation energy, oscillator strength, and transition dipole moments) of the phycocyanobilins (PCBs) located in APC were calculated at time‐dependent density functional theory (TDDFT) level of theory. To estimate the influence of protein environment on the preceding calculated physical quantities, the long‐range interactions were approximately considered with the polarizable continuum model at the TDDFT level of theory, and the short‐range interaction caused by surrounding aspartate residue of PCBs were taken into account as well. The shortest energy transfer time calculated in the framework of the Förster model at TDDFT/B3LYP/6–31+G* level of theory are about 0.10 ps in the APC trimer and about 170 ps in the APC monomer, which are in qualitative agreement with the experimental finding that a very fast lifetime of 0.43–0.44 ps in APC trimers, whereas its monomers lacked any corresponding lifetime. These results suggest that the lifetime of 0.43–0.44 ps in the APC trimers determined by Sharkov et al. was most likely attributed to the energy transfer of α1‐84 ? β3‐84 (0.23 ps), β1‐84 ? α2‐84 (0.11 ps) or β2‐84 ? α3‐84 (0.10 ps). So far, no experimental or theoretical energy transfer rates between two APC trimmers were reported, our calculations predict that the predominate energy transfer pathway between APC trimers is likely to occur from α3‐84 in one trimer to α5‐84 in an adjacent trimer with a rate of 32.51 ps. © 2014 Wiley Periodicals, Inc.  相似文献   

14.
The antivirally active 3′-deoxyadenylyl-(2′–5′)-3′-deoxyadenylyl-(2′–5′)-3′-deoxyadenosine (cordycepin trimer core) was modified at the 2′- or 5′-terminus, by attachment of cholesterol via a carbonate bond (→ 15 ) or a succinate linker (→ 16 and 27 ) to improve cell permeability. The corresponding monomeric conjugates 4 , 7 , and 21 of cordycepin were prepared as model substances to study the applicability of the anticipated protecting groups – the monomethoxytrityl (MeOTr), the (tert-butyl)dimethylsilyl (tbds), and the β -eliminating 2-(4-nitrophenyl)ethyl (npe) and 2-(4-nitrophenyl)ethoxycarbonyl (npeoc) groups – for the final deblocking steps without harming the ester bonds of the conjugate trimers. The syntheses were performed in solution using phosphoramidite chemistry. The fully protected trimer conjugates 13 , 14 , and 26 as well as all intermediates were characterized by elemental analyses, UV and 1H-NMR spectra. The deblocked conjugates 15 , 16 , and 27 were pure according to HPLC and showed the correct compositions by mass spectra. Comparative biological studies indicated that cordycepincholesterol conjugate trimers 16 and 27 were 333- and 1000-fold, respectively, more potent inhibitors of HIV-1-induced syncytia formation than cordycepin trimer core.  相似文献   

15.
Abstract— Quantum yield and fluorescence polarization determinations on phycobilisomes and their constituent phycobiliproteins show that phycobilisomes are energetically effective macromolecular structures. Energy migration within the phycobilisome to allophycocyanin, the longest wavelength absorbing and emitting phycobiliprotein, was indicated by the predominant allophycocyanin fluorescence emission which was independent of the phycobiliprotein being excited. The high efficiency of the energy migration inside the phycobilisome was reflected by the low polarized fluorescence. Excitation of phycobilisomes in the region of major absorption (500–650 nm) resulted in degrees of fluorescence polarization between +0.02 and –0.02, whereas in isolated phycobiliproteins the values were 2 to 12 times greater. Furthermore, 94–98° of the excitation energy of phycoerythrin was transferred to phycocyanin and allophycocyanin as determined from comparisons of fluorescence spectra of intact and dissociated phycobilisomes. The fluorescence quantum yields of phycobilisomes were about 0.60–0.68, very similar to that of pure allophycocyanin in solution (0.68). Phycobilisomes isolated from Fremyella diplosiphon and Nostoc sp. (blue-gree algae) have respective quantum yields of 0.68 and 0. 65, and those isolated from Porphyridium cruentum (red alga), about 0.60. In Fremyella diplosiphon and Nostoc sp., which showed a striking adaptation to different wavelengths, the phycobilisome quantum yields only varied from 0.68 to 0.67 and from 0.65 to 0. 60, respectively. The mean transfer time, calculated on the basis of experimental results, was about 280 ± 40 ps for transfer of excitation from the phycoerythrin to the phycocyanin layer in phycobilisomes. This time corresponds to the mean number of jumps, about 28, of the excitation in the phycoerythrin layer before it is captured by phycocyanin. These values are in reasonable agreement with the values of 250 ± 30 ps and 25 jumps, calculated on the basis of a phycobilisome model (of Porphyridium cruentum) and Pearlstein's theory of energy migration devised for a three-dimensional photosynthetic unit. It was also shown that Paillotin's theory of energy migration predicts similar values for mean transfer time and mean number of jumps, if one assumes that phycocyanin is a perfect sink for phycoerythrin excitation.  相似文献   

16.
Abstract— Time-resolved fluorescence spectra of intact cells of red and blue-green algae Porphyridium cruentum and Anacystis nidulans were measured by means of a ps laser and a time-correlated photon counting system. Fluorescence spectra were observed successively from various pigments in the light harvesting system in the order of phycoerythrin (PE), phycocyanin (PC), allophycocyanin (APC) and chlorophyll a (Chl a ). The spectrum changes with time in the range of0–400 ps in P. cruentum and of0–1000 ps in A. nidulans . The time-resolved spectra were analyzed into components to obtain the rise and decay curve of each fluorescence component. Overall time behaviors of the sequential fluorescence emissions from various pigments can be interpreted with a decay kinetics ofexp(–2 kt ½). The rate constants of the energy transfer show that the energy transfer takes place much faster in the red alga P. cruentum than in the blue-green alga A. nidulans , particularly in the step PCAPC. Results also indicated that a special form of APC, far-emitting APC, exists in the pigment system of A. nidulans , but it does not mediate a main energy transfer from phycobilisome to Chl a.  相似文献   

17.
IR spectra of photopolymerized fullerene films obtained by simultaneous deposition and UV irradiation were measured in the range of 1500-450 cm(-1). The degree of the polymerization of the C60 films was estimated to be about 95%. To assist the assignment of the experimental IR spectra of the films, quantum chemical calculations of the equilibrium structures of the C60 dimers and trimers were performed at the DFT(B3LYP)/3-21G level of theory. Next, IR frequencies and intensities for those structures were calculated. For the five-trimer structures found in the calculations, the relative stabilities were determined at the B3LYP/4-31G and B3LYP/6-31G levels and used to select the lowest-energy trimers, which are Trimer A (angle between monomer centers is 90 degrees ) and Trimer B (angle between monomer centers is 120 degrees). Next, the IR spectra of the polymerized fullerene films were compared with the calculated frequencies of the lowest-energy dimer and the two lowest-energy trimers. On the basis of this analysis and on the comparison of the film spectra with the IR spectra of the C60 dimer and trimer spectra obtained by other methods, it was shown that the main components of the films are C60 dimers and the orthorhombic (O) polymer phase. The tetragonal (T) and rhombohedral (R) polymers, as well as small amounts of monomers, were also found. Although vibrational frequencies of different C60 phases are similar in most cases, we found several unique spectral features of the C60 dimer and other polymers that may be used to determine the composition of the polymerized C60 film.  相似文献   

18.
Absorption and fluorescence emission spectra were measured at room temperature ( ca. 22°C) for solutions of phycocyanin-1, phycocyanin-2 and allophycocyanin from Phormidium luridum , and also for phycobilisome preparations from various blue-green algae ( Anabaena variabilis, Nostoc muscorum strain A, Nostoc sp. strain Mac, Phormidium luridum ). Kennard-Stepanov (KS) temperatures ( T ) were computed using the Kennard-Stepanov relationship F () = b A () -5 exp(-h/ kT ), where F () stands for fluorescence (energy per wavelength interval) as a function of wavelength (), A () is absorbance as a function of wavelength, b a proportionality factor, and h, c and k are Planck's constant, the velocity of light and Boltzmann's constant, respectively.
In most cases experimenta/ data followed the expected relationship, but at low ionic strength allophycocyanin gave a clearly biphasic KS plot, i.e. In 5 F ()/ A () vs 1/. This could be due to the presence of both monomers and trimers in the sample at low ionic strength.
For purified allophycocyanin and phycocyanins (PC-1 and PC-2) as well as phycobilisomes from Phormidium luridum , the KS temperatures were only slightly (insignificantly) elevated above the sample temperature. Thus, after absorption of a photon, vibrational and configurational equilibration is essentially completed before emission of the fluorescence photon takes place.
For phycobilisomes from Anabaena variabilis and the two Nostoc species the KS temperatures were moderately elevated. Since there was no correlation between radiation temperature and excitation wavelength, the elevation is not due to excess (undissipated) vibrational energy, but rather to incomplete configurational equilibration.  相似文献   

19.
Abstract Porphyrin binding to serum albumin was studied at the molecular level probing the effects of: porphyrin self-aggregation, porphyrin species, temperature and protein-bound fatty acids. Human serum albumin was found to have a single high-affinity site for porphyrin monomers, with binding constants of 2 x 106, 5 x 107 and 3 x 108 (37o C, neutral pH, M −1), for hemato-, deutero- and protoporphyrins, respectively. Three equilibria models for the dimer binding were developed and tested. The data were found to fit best with a model proposing a single high-affinity binding site for the dimer, independent of and different than the monomer site. The binding constants of the hematoporphyrin and deuteroporphyrin dimers to human serum albumin (37o C, neutral pH, M−l) being 4 x 10* and 5 x 108 respectively. The temperature dependence (Dp and HSA, 22-37o C) of the monomer binding showed the process to be entropy-driven (δGo= -45 kJ mol−1; δSo=+146 kJ mol−1; δHo= 0 kJ mol−1). For the dimer binding, the enthalpy change was found to be highly temperature-dependent implying continuous changes in the heat capacity of the system over the entire temperature range, the trend at the 37o C region fitting an entropy-driven process. The monomer vs dimer differences in temperature dependence strongly support separate and independent binding sites for these species. Similar thermodynamics were determined for fatty-acid carrying as well as for fatty-acid free HSA, with mild quantitative (but not qualitative) shifts.  相似文献   

20.
Synthesis of the C(8) BODIPY monomers, dimers, and trimers, a C(8) polymer, and N(8) aza-BODIPY monomer and dimer was carried out. Methyl and mesityl C(8)-substituted monomers, dimers, and trimers were used. Dimers, trimers, and polymer were formed chemically through the β-β (2/6) positions by oxidative coupling using FeCl(3). A red shift of the absorbance and fluorescence is observed with addition of monomer units from monomer to polymer for C(8) dyes. The aza-BODIPY dye shows red-shifted absorbance and fluorescence compared with the C(8) analogue. Cyclic voltammetry shows one, two, and three one-electron waves on both reduction and oxidation for the monomer, dimer, and trimer, respectively, for the C(8) BODIPYs. The separation for the reduction peaks for the C(8) dimers is 0.12 V compared with 0.22 V for the oxidation, while the trimers show separations of 0.09 V between reduction peaks and 0.13 V for oxidation peaks. The larger separations between the second and third peaks, 0.25 V for the oxidation and 0.2 V for the reduction, are consistent with a larger energy to remove or add a third electron compared with the second one. The BODIPY polymer shows the presence of many sequential one-electron waves with a small separation. These results provide evidence for significant electronic interactions between different monomer units. The aza-BODIPY dye shows a reduction peak 0.8 V more positive compared to the C(8) compound. Aza-BODIPY dimer shows the appearance of four waves in dichloromethane. The separation between two consecutive waves is around 0.12 V for reduction compared with 0.2 V for oxidation, which is comparable with the results for the C(8) dyes. Electrogenerated chemiluminescence (ECL) of the different species was obtained, including weak ECL of the polymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号