首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A density matrix renormalization group-self consistent field (DMRG-SCF) study has been carried out to calculate the low-lying excited states of CpMo(CO)2NO, a molybdenum complex containing NO and CO ligands. In order to automatically select an appropriate active space, a novel procedure employing the maximum single-orbital entropy for several states has been introduced and shown to be efficient and easy-to-implement when several electronic states are simultaneously considered. The analysis of the resulting natural transition orbitals and charge-transfer numbers shows that the lowest five excited electronic states are excitation into metal-NO antibonding orbitals, which offer the possibility for nitric oxide (NO) photorelease after excitation with visible light. Higher excited states are metal-centered excitations with contributions of metal-CO antibonding orbitals, which may serve as a gateway for carbon monoxide (CO) delivery. Time-dependent density functional theory calculations done for comparison, show that the state characters agree remarkably well with those from DMRG-SCF, while excitation energies are 0.4–1.0 eV red-shifted with respect to the DMRG-SCF ones.  相似文献   

2.
We present a combined density functional theory (DFT)/time-dependent density functional theory (TDDFT) study of the geometry, electronic structure, and absorption and emission properties of the tetranuclear "cubane" Cu4I4py4 (py = pyridine) system. The geometry of the singlet ground state and of the two lowest triplet states of the title complex were optimized, followed by TDDFT excited-state calculations. This procedure allowed us to characterize the nature of the excited states involved in the absorption spectrum and those responsible for the dual emission bands observed for this complex. In agreement with earlier experimental proposals, we find that while in absorption the halide-to-pyridine charge-transfer excited state (XLCT*) has a lower energy than the cluster-centered excited state (CC*), a strong geometrical relaxation on the triplet cluster-centered state surface leads to a reverse order of the excited states in emission.  相似文献   

3.
The synthesis, complete structural characterization, electrochemistry, and excited-state dynamics of a series of four bis-heteroleptic iridium(III) charge-transfer complexes composed of a single acac-functionalized and two ortho-metalated 2-phenylpyridine ligands. The formed iodophenyl complex (2) was used as a metallosynthon to introduce extended-core ethynyltolyl (3), ethynylpyrene (4), and ethynylperylene (5) residues into these structures projecting from the acac ancillary ligand. Static and dynamic photoluminescence along with ultrafast and conventional transient absorption measurements in conjunction with cyclic voltammetry were employed to elucidate the nature of the intramolecular energy-transfer processes occurring in the excited states of polychromophores 4 and 5 and are directly compared with those of model complexes 2 and 3. Upon charge-transfer excitation of these molecules, the long-lived triplet-state metal-to-ligand charge-transfer ((3)MLCT)-based photoluminescence readily observed in 2 and 3 (τ = 1 μs) is nearly quantitatively quenched, resulting from production of the associated triplet intraligand ((3)IL) excited states in 4 and 5 through intramolecular triplet-triplet energy transfer. The respective formation of the extended-core (3)*pyrenyl and (3)*perylenyl-localized excited states in 4 and 5 is confirmed by their ultrafast excited-state evolution, which ultimately generates features associated with these (3)IL excited states and their greatly extended excited-state lifetimes with respect to the parent complexes 2 and 3.  相似文献   

4.
Spectroscopic properties of a ground state nonbonded porphine-buckminsterfullerene (H2P...C60) complex are studied in several different relative orientations of C60 with respect to the porphine plane by using the density functional (DFT) and time-dependent density functional (TDDFT) theories. The geometries and electronic structures of the ground states are optimized with the B3LYP and PBE functionals and a SVP basis set. Excitation energies and oscillator strengths are obtained from the TDDFT calculations. The relative orientation of C60 is found to affect the equilibrium distance between H2P and C60 especially in the case of the PBE functional. The excitation energies of different H2P...C60 complexes are found to be practically the same for the same excitations when the B3LYP functional is used but to differ notably when PBE is used in calculations. Existence of the states related to a photoinduced electron transfer within a porphyrin-fullerene dyad is also studied. All calculations predict a formation of an excited charge-transfer complex state, a locally excited donor (porphine) state, as well as a locally excited acceptor (fullerene) state in the investigated H2P...C60 complexes.  相似文献   

5.
A new interpretation of the electronic spectroscopy, photochemistry, and photophysics of group 6 metal cis-tetracarbonyls [M(CO)(4)L(2)] is proposed, that is based on an interplay between M --> L and M --> CO MLCT excited states. TD-DFT and resonance Raman spectroscopy show that the lowest allowed electronic transition of [W(CO)(4)(en)] (en = 1,2-ethylenediamine) has a W(CO(eq))(2) --> CO(ax) charge-transfer character, whereby the electron density is transferred from the equatorial W(CO(eq))(2) moiety to pi orbitals of the axial CO ligands, with a net decrease of electron density on the W atom. The lowest, emissive excited state of [W(CO)(4)(en)] was identified as a spin-triplet W(CO(eq))(2) --> CO(ax) CT excited state both computationally and by picosecond time-resolved IR spectroscopy. This state undergoes 1.5 ps vibrational relaxation/solvation and decays to the ground state with a approximately 160 ps lifetime. The nu(CO) wavenumbers and IR intensity pattern calculated by DFT for the triplet W(CO(eq))(2) --> CO(ax) CT excited state match well the experimental time-resolved spectrum. For [W(CO)(4)(R-DAB)] (R-DAB = N,N'-bis-alkyl-1,4-diazabutadiene), the W(CO(eq))(2) --> CO(ax) CT transition follows in energy the W --> DAB MLCT transition, and the emissive W(CO(eq))(2) --> CO(ax) CT triplet state occurs just above the manifold of triplet W --> DAB MLCT states. No LF electronic transitions were calculated to occur in a relevant energetic range for either complex. Molecular orbitals of both complexes are highly delocalized. The 5d(W) character is distributed over many molecular orbitals, while neither of them contains a predominant metal-ligand sigma 5d(W) component, contrary to predictions of the traditional ligand-field approach. The important spectroscopic, photochemical, and photophysical roles of M(CO(eq))(2) --> CO(ax) CT excited states and the limited validity of ligand field arguments can be generalized to other mixed-ligand carbonyl complexes.  相似文献   

6.
The molybdenum(V) complex [Mo(O)Cl(3)dppe] [dppe = 1,2-bis(diphenylphosphino)ethane] is considered as a model system for a combined study of the electronic structure using UV/vis absorption and magnetic circular dichroism (MCD) spectroscopy. In order to determine the signs and MCD C-term intensities of the chlorido → molybdenum charge-transfer transitions, it is necessary to take the splitting of the excited doublet states into sing-doublet and trip-doublet states into account. While transitions to the sing-doublet states are electric-dipole-allowed, those to the trip-doublet states are electric-dipole-forbidden. As spin-orbit coupling within the manifold of sing-doublet states vanishes, configuration interaction between the sing-doublet and trip-doublet states is required to generate the MCD C-term intensity. The most prominent feature in the MCD spectrum of [Mo(O)Cl(3)dppe] is a "double pseudo-A term", which consists of two corresponding pseudo-A terms centered at 27000 and 32500 cm(-1). These are assigned to the ligand-to-metal charge-transfer transitions from the p(π) orbitals of the equatorial chlorido ligands to the Mo d(yz) and d(xz) orbitals. On the basis of the theoretical expressions developed by Neese and Solomon (Inorg. Chem. 1999, 38, 1847-1865), a general treatment of the MCD C-term intensity of these transitions is presented that explicitly considers the multideterminant character of the excited states. The individual MCD signs are determined from the corresponding transition densities derived from the calculated molecular orbitals of the title complex (BP86/LANL2DZ).  相似文献   

7.
8.
Organometallic actinide bis(ketimide) complexes (C5Me5)2An[-N=C(Ph)(R)]2 (where R = Ph, Me, and CH2Ph) of thorium(IV) and uranium(IV) have recently been synthesized that exhibit chemical, structural, and spectroscopic (UV-Visible, resonance-enhanced Raman) evidence for unusual actinide-ligand bonding. [Da Re et al., J. Am. Chem. Soc., 2005, 127, 682; Jantunen et al., Organometallics, 2004, 23, 4682; Morris et al., Organometallics, 2004, 23, 5142.] Similar evidence has been observed for the group 4 analogue (C5H5)2Zr[-N=CPh2]2. [Da Re et al., J. Am. Chem. Soc., 2005, 127, 682.] These compounds have important implications for the development of new heavy-element systems that possess novel electronic and magnetic properties. Here, we have investigated M-ketimido bonding (M = Th, U, Zr), as well as the spectroscopic properties of the highly colored bis-ketimido complexes, using density functional theory (DFT). Photoelectron spectroscopy (PES) has been used to experimentally elucidate the ground-state electronic structure of the thorium and uranium systems. Careful examination of the ground-state electronic structure, as well as a detailed modeling of the photoelectron spectra, reveals similar bonding interactions between the thorium and uranium compounds. Using time-dependent DFT (TDDFT), we have assigned the bands in the previously reported UV-Visible spectra for (C5Me5)2Th[-N=CPh2]2, (C5Me5)2U[-N=CPh2]2, and (C5H5)2Zr[-N=CPh2]2. The low-energy transitions are attributed to ligand-localized N p --> C=N pi excitations. These excited states may be either localized on a single ketimido unit or may be of the ligand-ligand charge-transfer type. Higher-energy transitions are cyclopentadienyl pi --> CN pi or cyclopentadienyl pi --> phenyl pi in character. The lowest-energy excitation in the (C5Me5)2U[-N=Ph2]2 compound is attributed to f-f and metal-ligand charge-transfer transitions that are not available in the thorium and zirconium analogues. Geometry optimization and vibrational analysis of the lowest-energy triplet state of the zirconium and thorium compounds also aids in the assignment and understanding of the resonance-enhanced Raman data that has recently been reported. [Da Re et al., J. Am. Chem. Soc., 2005, 127, 682.].  相似文献   

9.
In this study, we perform steady-state and time-resolved X-ray absorption spectroscopy (XAS) on the iron K-edge of [Fe(tren(py)3)](PF6)2 dissolved in acetonitrile solution. Static XAS measurements on the low-spin parent compound and its high-spin analogue, [Fe(tren(6-Me-py)3)](PF6)2, reveal distinct spectroscopic signatures for the two spin states in the X-ray absorption near-edge structure (XANES) and in the X-ray absorption fine structure (EXAFS). For the time-resolved studies, 100 fs, 400 nm pump pulses initiate a charge-transfer transition in the low-spin complex. The subsequent electronic and geometric changes associated with the formation of the high-spin excited state are probed with 70 ps, 7.1 keV, tunable X-ray pulses derived from the Advanced Light Source (ALS). Modeling of the transient XAS data reveals that the average iron-nitrogen (Fe-N) bond is lengthened by 0.21+/-0.03 A in the high-spin excited state relative to the ground state within 70 ps. This structural modification causes a change in the metal-ligand interactions as reflected by the altered density of states of the unoccupied metal orbitals. Our results constitute the first direct measurements of the dynamic atomic and electronic structural rearrangements occurring during a photoinduced FeII spin crossover reaction in solution via picosecond X-ray absorption spectroscopy.  相似文献   

10.
The design of more efficient photosensitizers is a matter of great importance in the field of cancer treatment by means of photodynamic therapy. One of the main processes involved in the activation of apoptosis in cancer cells is the oxidative stress on DNA once a photosensitizer is excited by light. As a consequence, it is very relevant to investigate in detail the binding modes of the chromophore with DNA, and the nature of the electronically excited states that participate in the induction of DNA damage, for example, charge-transfer states. In this work, we investigate the electronic structure of the anthraquinone photosensitizer intercalated into a double-stranded poly(dG-dC) decamer model of DNA. First, the different geometric configurations are analyzed by means of classical molecular dynamics simulations. Then, the excited states for the most relevant poses of anthraquinone inside the binding pocket are computed by an electrostatic-embedding quantum mechanics/molecular mechanics approach, where anthraquinone and one of the nearby guanine residues are described quantum mechanically to take into account intermolecular charge-transfer states. The excited states are characterized as monomer, exciton, excimer, and charge-transfer states based on the analysis of the transition density matrix, and each of these contributions to the total density of states and absorption spectrum is discussed in terms of the stacking interactions. These results are relevant as they represent the footing for future studies on the reactivity of anthraquinone derivatives with DNA and give insights on possible geometrical configurations that potentially favor the oxidative stress of DNA.  相似文献   

11.
The photophysical properties of closely-coupled, binuclear complexes formed by connecting two ruthenium(II) tris(2,2'-bipyridine) complexes via an alkynylene group differ significantly from those of the relevant mononuclear complex. In particular, the energy of the first triplet excited state is lowered relative to the parent complex, because of the presence of the alkynylene substituent, while the triplet lifetime is prolonged, in part, because of extended electron delocalization. We now report that the triplet lifetime is also affected by the nature of the spectator 2,2'-bipyridyl ligands. Thus, replacing the parent 2,2'-bipyridine ligands with the corresponding 4,4'-dinitro-substituted ligands serves to decrease the luminescence yield and lifetime. With the corresponding carboxylate ester, the luminescence yield and lifetime are increased. Perdeuteration of the parent 2,2'-bipyridine ligands also leads to a modest increase in the luminescence yield. Such observations are indicative of electronic coupling between the various metal-to-ligand, charge-transfer excited triplet states. Temperature dependence studies confirm that these excited states are closely spaced and thermally accessible at ambient temperature. For some of the binuclear complexes, the quantum yield for formation of the lowest-energy triplet state is significantly less than unity.  相似文献   

12.
The lowest absorption band of fac-[Re(Cl)(CO)3(5-NO2-phen)] encompasses two close-lying MLCT transitions. The lower one is directed to LUMO, which is heavily localized on the NO2 group. The UV-vis absorption spectrum is well accounted for by TD-DFT (G03/PBEPBE1/CPCM), provided that the solvent, MeCN, is included in the calculations. Near-UV excitation of fac-[Re(Cl)(CO)3(5-NO2-phen)] populates a triplet metal to ligand charge-transfer excited state, 3MLCT, that was characterized by picosecond time-resolved IR spectroscopy. Large positive shifts of the nu(CO) bands upon excitation (+70 cm(-1) for the A'1 band) signify a very large charge separation between the Re(Cl)(CO)3 unit and the 5-NO2-phen ligand. Details of the excited-state character are revealed by TD-DFT calculated changes of electron density distribution. Experimental excited-state nu(CO) wavenumbers agree well with those calculated by DFT. The 3MLCT state decays with a ca. 10 ps lifetime (in MeCN) into another transient species, that was identified by TRIR and TD-DFT calculations as an intraligand 3npi excited state, whereby the electron density is excited from the NO2 oxygen lone pairs to the pi system of 5-NO2-phen. This state is short-lived, decaying to the ground state with a approximately 30 ps lifetime. The presence of an npi state seems to be the main factor responsible for the lack of emission and the very short lifetimes of 3MLCT states seen in all d6-metal complexes of nitro-polypyridyl ligands. Localization of the excited electron density in the lowest 3MLCT states parallels localization of the extra electron in the reduced state that is characterized by a very small negative shift of the nu(CO) IR bands (-6 cm(-1) for A'1) but a large downward shift of the nu(s)(NO2) IR band. The Re-Cl bond is unusually stable toward reduction, whereas the Cl ligand is readily substituted upon oxidation.  相似文献   

13.
1 INTRODUCTION Since the discovery of one-dimensional metallic behavior of tetrathiafulvalene (TTF) with tetracyano- quinodimethane (TCNQ)[1], organic charge-transfer (CT) complexes and CT salts have been intensively studied in search of electrically conducting and superconducting properties[2 ~ 6] which are most unusual for an organic material. The most intriguing property is that it is excellent metal with conducti- vity similar to that of metals at room temperature[7, 8]. In these…  相似文献   

14.
Ultrafast pump-probe spectroscopic studies have been performed on (C 5Me 5) 2U[- N=C(Ph)(CH 2Ph)] 2 and (C 5Me 5) 2Th[- N=C(Ph)(CH 2Ph)] 2 including, for the uranium complex, the first direct measurement of dynamics of electronic deactivation within a 5f-electron manifold. Evidence has been found for strong coupling between the electronic ground state and the f-electron manifold which dominates the dynamics of the excited states of the bis(ketimide) uranium complex. These also demonstrate strong singlet-f manifold coupling, which assists in the deactivation of the photoexcited state of the uranium complex, and provide information on intersystem crossing and internal conversion processes in both complexes.  相似文献   

15.
A molecular triad has been synthesized comprising two free-base porphyrin terminals linked to a central ruthenium(II) bis(2,2':6',2'-terpyridine) subunit via meso-phenylene groups. Illumination into the ruthenium(II) complex is accompanied by rapid intramolecular energy transfer from the metal-to-ligand, charge-transfer (MLCT) triplet to the lowest-energy pi-pi* triplet state localized on one of the porphyrin subunits. Transfer takes place from a vibrationally excited level which lowers the activation energy. The electronic coupling matrix element for this process is 73 cm(-1). Selective illumination into the lowest-energy singlet excited state (S1) localized on the porphyrin leads to fast singlet-triplet energy transfer that populates the MLCT triplet state with high efficiency. This latter process occurs via Dexter-type electron exchange at room temperature, but the activation energy is high and the reaction is prohibited at low temperature. For this latter process, the electronic coupling matrix element is only 8 cm(-1).  相似文献   

16.
The photophysical and electrochemical properties of a platinum(II) diimine complex bearing the bidentate diacetylide ligand tolan-2,2'-diacetylide (tda), Pt(dbbpy)(tda) [dbbpy = 4,4'-di-tert-butyl-2,2'-bipyridine] (1), are compared with two reference compounds, Pt(dbbpy)(C[triple bond]CPh)(2) (2) and Pt(dppp)tda [dppp = 1,3-bis(diphenylphosphino)propane] (3), respectively. The X-ray crystal structure of 1 is reported, which illustrates the nearly perfect square planarity exhibited by this metallacycle. Chromophore 2 possesses low-lying charge-transfer excited states analogous to 1, whereas structure 3 lacks such excited states but features a low-lying platinum-perturbed tda intraligand triplet manifold. In CH(2)Cl(2), 1 exhibits a broad emission centered at 562 nm at ambient temperature, similar to 2, but with a higher photoluminescence quantum yield and longer excited-state lifetime. In both instances, the photoluminescence is consistent with triplet-charge-transfer excited-state parentage. The rigidity imposed by the cyclic diacetylide ligand in 1 leads to a reduction in nonradiative decay, which enhances its room-temperature photophysical properties. By comparison, 3 radiates highly structured tda-localized triplet-state phosphorescence at room temperature. The 77 K emission spectrum of 1 in 4:1 EtOH/MeOH becomes structured and is quantitatively similar to that measured for 3 under the same conditions. Because the 77 K spectra are nearly identical, the emissions are assigned as (3)tda in nature, implying that the charge-transfer states are raised in energy, relative to the (3)tda levels in 1 in the low-temperature glass. Nanosecond transient absorption spectrometry and ultrafast difference spectra were determined for 1-3 in CH(2)Cl(2) and DMF at ambient temperature. In 1 and 2, the major absorption transients are consistent with the one-electron reduced complexes, corroborated by reductive spectroelectrochemical measurements performed at room temperature. As 3 does not possess any charge-transfer character, excitation into the pipi* transitions of the tda ligand generated transient absorptions in the relaxed excited state assigned to the ligand-localized triplet state. In all three cases, the excited-state lifetimes measured by transient absorption are similar to those measured by time-resolved photoluminescence, suggesting that the same excited states giving rise to the photoluminescence are responsible for the absorption transients. ESR spectroscopy of the anions 1- and 2- and reductive spectroelectrochemistry of 1 and 2 revealed a LUMO based largely on the pi* orbital of the dbbpy ligand. Time-dependent density functional theory calculations performed on 1-3 both in vacuum and in a CH(2)Cl(2) continuum revealed the molecular orbitals, energies, dipole moments, and oscillator strengths for the various electronic transitions in these molecules. A DeltaSCF-method-derived shift applied to the calculated transition energies in the solvent continuum yielded good agreement between theory and experiment for each molecule in this study.  相似文献   

17.
The electronic structure of the ground electronic state and of some special charge-transfer excited states in ionic solids is examined from the ab initio cluster model approach. Different ab initio wave functions, including a frozen orbital approach, the Hartree–Fock self-consistent field, and multireference configuration interaction wave functions, are considered and analyzed using different theoretical techniques. We explicitly consider some alkaline–earth oxides such as CaO, a more difficult case such as A12O3, a transition-metal oxide such as NiO, and a system with a more complicated structure such as KNiF3. Analysis of ab initio wave functions in terms of valence bond components shows that all these compounds are largely ionic, thus supporting the simple picture arising from the ionic model. However, the nature of the excited states is more complex. Alkaline–earth oxides lowest excited states are essentially described as charge-transfer excitations dominated by a single resonant valence bond structure and the calculated energy difference is comparable to the experimental optical gap. In the case of A12O3, the electronic spectra presents excitonic features and the local charge-transfer excitation excited states provide a reasonable representation of these phenomena. Finally, several different valence bond structures are present in the lowest electronic states of KNiF3. © 1994 John Wiley & Sons, Inc.  相似文献   

18.
Molecular structures and excited states of CpM(CO)(2) (Cp = eta(5)-C(5)H(5); M = Rh, Ir) and [Cl(2)Rh(CO)(2)](-) complexes have been investigated using the B3LYP and the symmetry-adapted cluster (SAC)/SAC-configuration interaction (SAC-CI) theoretical methods. All the dicarbonyl complexes have singlet ground electronic states with large singlet-triplet separations. Thermal dissociations of CO from the parent dicarbonyls are energetically unfavorable. CO thermal dissociation is an activation process for [Cl(2)Rh(CO)(2)](-) while it is a repulsive potential for CpM(CO)(2). The natures of the main excited states of CpM(CO)(2) and [Cl(2)Rh(CO)(2)](-) are found to be quite different. For [Cl(2)Rh(CO)(2)](-), all the strong transitions are identified to be metal to ligand CO charge transfer (MLCT) excitations. A significant feature of the excited states of CpM(CO)(2) is that both MLCT excitation and a ligand Cp to metal and CO charge transfer excitation are strongly mixed in the higher energy states with the latter having the largest oscillator strength. A competitive charge transfer excited state has therefore been identified theoretically for CpRh(CO)(2) and CpIr(CO)(2). The wavelength dependence of the quantum efficiencies for the photoreactions of CpM(CO)(2) reported by Lees et al. can be explained by the existence of two different types of excited states. The origin of the low quantum efficiencies for the C-H/S-H bond activations of CpM(CO)(2) can be attributed to the smaller proportion of the MLCT excitation in the higher energy states.  相似文献   

19.
A series of three geometrically constrained C(2)-symmetric Cu(I) mono-phenanthroline complexes were characterized by X-ray structural analysis, and their photophysical properties were investigated by absorption and emission spectroscopy. Visible light excitation yielded metal-to-ligand charge-transfer (MLCT) excited states with luminescence lifetimes up to 155 ns. Ultrafast transient absorption spectroscopy provided further insights into the excited-state dynamics and suggests for all three complexes the formation of a phenanthroline radical anion. In agreement with electrochemical measurements, the data further indicate that coordinative rearrangements are involved in nonradiative deactivation of the excited states. According to time-dependent density functional theory calculations (B3LYP/6-31G), the major MLCT transitions are polarized along the C(2) axis of the complex and originate predominantly from the copper d(xz) orbital. The computational analysis identifies an excited-state manifold with a number of close-lying, potentially emissive triplet states and is in agreement with the multiexponential decay kinetics of the MLCT luminescence. The relationship between structural and photophysical data of the studied Cu(I) mono-phenanthroline complexes agrees well with current models describing the photophysics of the related Cu(I) bis-diimine complexes.  相似文献   

20.
The extremely low efficiency of the intramolecular energy transfer process in europium acetylacetonate compared with the corresponding terbium acetylacetonate is attributed to the presence of a charge-transfer excited state lying below the ligand singlet states. This is supported by the anomalous absorption spectrum of the Eu3+ complex and the effects of added anions in other ligand systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号