首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Amit Sharma 《Physics letters. A》2019,383(16):1865-1870
We investigate the dynamics of delay-coupled relay oscillators with conjugate (or dissimilar) coupling and find the partial death with the phase-flip transition. This phenomenon is quite general and occurs for the limit cycle as well as chaotic relay oscillators. In the regime of partial death, parts of the system oscillate with large amplitude, while other element stays at rest. Using the Stuart-Landau and Rössler oscillators, we demonstrate that partial amplitude death is a robust dynamical state in coupled oscillators. We also studied the mismatch delay and find different types of dynamical pattern with partial death.  相似文献   

2.
Recently, the phase-flip bifurcation has been described as a fundamental transition in time-delay coupled, phase-synchronized nonlinear dynamical systems. The bifurcation is characterized by a change of the synchronized dynamics from being in-phase to antiphase, or vice versa; the phase-difference between the oscillators undergoes a jump of pi as a function of the coupling strength or the time delay. This phase-flip is accompanied by discontinuous changes in the frequency of the synchronized oscillators, and in the largest negative Lyapunov exponent or its derivative. Here we illustrate the phenomenology of the bifurcation for several classes of nonlinear oscillators, in the regimes of both periodic and chaotic dynamics. We present extensive numerical simulations and compute the oscillation frequencies and the Lyapunov spectra as a function of the coupling strength. In particular, our simulations provide clear evidence of the phase-flip bifurcation in excitable laser and Fitzhugh-Nagumo neuronal models, and in diffusively coupled predator-prey models with either limit cycle or chaotic dynamics. Our analysis demonstrates marked jumps of the time-delayed and instantaneous fluxes between the two interacting oscillators across the bifurcation; this has strong implications for the performance of the system as well as for practical applications. We further construct an electronic circuit consisting of two coupled Chua oscillators and provide the first formal experimental demonstration of the bifurcation. In totality, our study demonstrates that the phase-flip phenomenon is of broad relevance and importance for a wide range of physical and natural systems.  相似文献   

3.
Amit Sharma 《Physics letters. A》2019,383(17):2051-2055
We report the emergence of an explosive synchronization transition in the identical oscillators interacting indirectly through a network of dynamical agents. The transition from incoherent state to coherent state and vice–versa in these coupled oscillator exhibits an abrupt as well as irreversible. Such transition depends on the network topology as well as the interaction between the oscillators and dynamical agents rather than degree-frequency correlation in the network of oscillators. The occurrence of explosive synchronization is studied in details by using an appropriate order parameter for limit-cycle oscillators with respect to the different parameters like rewiring probability, average degree, and diffusion rate in dynamical agents.  相似文献   

4.
Synchronization of networked phase oscillators depends essentially on the correlation between the topological structure of the graph and the dynamical property of the elements.We propose the concept of 'reduced frequency',a measure which can quantify natural frequencies of each pair of oscillators.Then we introduce an evolving network whose linking rules are controlled by its own dynamical property.The simulation results indicate that when the linking probability positively correlates with the reduced frequency,the network undergoes a first-order phase transition.Meanwhile,we discuss the circumstance under which an explosive synchronization can be ignited.The numerical results show that the peculiar butterfly shape correlation between frequencies and degrees of the nodes contributes to an explosive synchronization transition.  相似文献   

5.
A recent study has found an explosive synchronization in a Kurammoto model on scale-free networks when the natural frequencies of oscillators are equal to their degrees. In this work, we introduce a quantity to characterize the correlation between the structural and the dynamical properties and investigate the impacts of the correlation on the synchronization transition in the Kuramoto model on scale-free networks. We find that the synchronization transition may be either a continuous one or a discontinuous one depending on the correlation and that strong correlation always postpones both the transitions from the incoherent state to a synchronous one and the transition from a synchronous state to the incoherent one. We find that the dependence of the synchronization transition on the correlation is also valid for other types of distributions of natural frequency.  相似文献   

6.
Synchronization is a widespread phenomenon in both synthetic and real-world networks. This collective behavior of simple and complex systems has been attracting much research during the last decades. Two different routes to synchrony are defined in networks; first-order, characterized as explosive, and second-order, characterized as continuous transition. Although pioneer researches explained that the transition type is a generic feature in the networks, recent studies proposed some frameworks in which different phase and even chaotic oscillators exhibit explosive synchronization. The relationship between the structural properties of the network and the dynamical features of the oscillators is mainly proclaimed because some of these frameworks show abrupt transitions. Despite different theoretical analyses about the appearance of the first-order transition, studies are limited to the mean-field theory, which cannot be generalized to all networks. There are different real-world and man-made networks whose properties can be characterized in terms of explosive synchronization, e.g., the transition from unconsciousness to wakefulness in the brain and spontaneous synchronization of power-grid networks. In this review article, explosive synchronization is discussed from two main aspects. First, pioneer articles are categorized from the dynamical-structural framework point of view. Then, articles that considered different oscillators in the explosive synchronization frameworks are studied. In this article, the main focus is on the explosive synchronization in networks with chaotic and neuronal oscillators. Also, efforts have been made to consider the recent articles which proposed new frameworks of explosive synchronization.  相似文献   

7.
We study synchronization behavior in networks of coupled chaotic oscillators with heterogeneous connection degrees. Our focus is on regimes away from the complete synchronization state, when the coupling is not strong enough, when the oscillators are under the influence of noise or when the oscillators are nonidentical. We have found a hierarchical organization of the synchronization behavior with respect to the collective dynamics of the network. Oscillators with more connections (hubs) are synchronized more closely by the collective dynamics and constitute the dynamical core of the network. The numerical observation of this hierarchical synchronization is supported with an analysis based on a mean field approximation and the master stability function.  相似文献   

8.
Dynamical weights and enhanced synchronization in adaptive complex networks   总被引:4,自引:0,他引:4  
Dynamical organization of connection weights is studied in scale-free networks of chaotic oscillators, where the coupling strength of a node from its neighbors develops adaptively according to the local synchronization property between the node and its neighbors. We find that when complete synchronization is achieved, the coupling strength becomes weighted and correlated with the topology due to a hierarchical transition to synchronization in heterogeneous networks. Importantly, such an adaptive process enhances significantly the synchronizability of the networks, which could have meaningful implications in the manipulation of dynamical networks.  相似文献   

9.
We examine the dynamics of two time-delay coupled Nishio-Inaba circuits exhibiting limit-cycle motion. By numerically solving the governing delay-differential equations, we show that the delay coupled Nishio-Inaba circuits undergo a phase-flip transition. Our results reveal that depending on the strength of coupling and the amount of time-delay, the relative phase between the oscillators changes from in-phase to anti-phase and vice versa, and the pattern repeats with increasing delay. We also verify our numerical predictions using OrCAD PSpice circuit simulation.  相似文献   

10.
11.
This paper aims to investigate the synchronization problem of coupled dynamical networks with nonidentical Duffing-type oscillators without or with coupling delays. Different from cluster synchronization of nonidentical dynamical networks in the previous literature, this paper focuses on the problem of complete synchronization, which is more challenging than cluster synchronization. By applying an impulsive controller, some sufficient criteria are obtained for complete synchronization of the coupled dynamical networks of nonidentical oscillators. Furthermore, numerical simulations are given to verify the theoretical results.  相似文献   

12.
Modeling approaches are presented for detecting an anomalous route to phase synchronization from time series of two interacting nonlinear oscillators. The anomalous transition is characterized by an enlargement of the mean frequency difference between the oscillators with an initial increase in the coupling strength. Although such a structure is common in a large class of coupled nonisochronous oscillators, prediction of the anomalous transition is nontrivial for experimental systems, whose dynamical properties are unknown. Two approaches are examined; one is a phase equational modeling of coupled limit cycle oscillators and the other is a nonlinear predictive modeling of coupled chaotic oscillators. Application to prototypical models such as two interacting predator-prey systems in both limit cycle and chaotic regimes demonstrates the capability of detecting the anomalous structure from only a few sets of time series. Experimental data from two coupled Chua circuits shows its applicability to real experimental system.  相似文献   

13.
We analyze the interplay of synchronization and structure evolution in an evolving network of phase oscillators. An initially random network is adaptively rewired according to the dynamical coherence of the oscillators, in order to enhance their mutual synchronization. We show that the evolving network reaches a small-world structure. Its clustering coefficient attains a maximum for an intermediate intensity of the coupling between oscillators, where a rich diversity of synchronized oscillator groups is observed. In the stationary state, these synchronized groups are directly associated with network clusters.  相似文献   

14.
《Physics letters. A》2020,384(24):126605
We investigate the dynamical robustness property of the damaged network of active and inactive oscillators under the influence of the mean-field diffusion. The tolerance of dynamical activity of the entire coupled network has realized through the aging transition in the coupled dynamical network. We analytically derived the critical threshold of mean-field density and coupling values for the appearance of the aging transition in the damaged network. By using the critical values as a quantifiable measure of dynamical robustness of the damaged network, we showed that higher mean-field value is favorable to increase the dynamical robustness of the entire network. We also perform the numerical experiment on the network of Stuart-Landau oscillators and the obtained numerical results have an excellent agreement with the analytical findings. Finally, we extend our investigation into the coupled time-delayed network and discussed the affirmative influence of the mean-field parameter on the dynamical robustness of the network.  相似文献   

15.
We describe the relation between the complete, phase and generalized synchronization of the mechanical oscillators (response system) driven by the chaotic signal generated by the driven system. We identified the close dependence between the changes in the spectrum of Lyapunov exponents and a transition to different types of synchronization. The strict connection between the complete synchronization (imperfect complete synchronization) of response oscillators and their phase or generalized synchronization with the driving system (the (1:1) mode locking) is shown. We argue that the observed phenomena are generic in the parameter space and preserved in the presence of a small parameter mismatch.  相似文献   

16.
We investigate the transition to synchronization in ensembles of coupled oscillators with quenched disorder. We find that small coupling is able to increase the frequency disorder and to induce a spread of oscillator frequencies. This new effect of anomalous desynchronization is studied with numerical and analytical means in a large class of systems including R?ssler, Lotka-Volterra, Landau-Stuart, and Van-der-Pol oscillators. We show that anomalous effects arise due to an interplay between nonisochronicity and natural frequency of each oscillator and can either increase or inhibit synchronization in the ensemble. This provides a novel possibility to control the synchronization transition in nonidentical systems by suitably distributing the disorder among system parameters. We conjecture that our results are of relevance for biological systems.  相似文献   

17.
Signal transmission time delays in a network of nonlinear oscillators are known to be responsible for a variety of interesting dynamic behaviors including phase-flip transitions leading to synchrony or out of synchrony. Here, we uncover that phase-flip transitions are general phenomena and can occur in a network of coupled bursting neurons with a variety of coupling types. The transitions are marked by nonlinear changes in both temporal and phase-space characteristics of the coupled system. We demonstrate these phase-transitions with Hindmarsh-Rose and Leech-Heart interneuron models and discuss the implications of these results in understanding collective dynamics of bursting neurons in the brain.  相似文献   

18.
The propensity for synchronization of complex networks with directed and weighted links is considered. We show that a weighting procedure based upon the global structure of network pathways enhances complete synchronization of identical dynamical units in scale-free networks. Furthermore, we numerically show that very similar conditions hold also for phase synchronization of nonidentical chaotic oscillators.  相似文献   

19.
Dynamics in coupled Dufling oscillators with two coexisting symmetrical attractors is investigated. For a pair of Dufl~ng oscillators coupled linearly, the transition to the synchronization generally consists of two steps: Firstly, the two oscillators have to jump onto a same attractor, then they reach synchronization similarly to coupled monostable oscillators. The transition scenarios to the synchronization observed are strongly dependent on initial conditions.  相似文献   

20.
We present a method to obtain the frequency spectrum of a signal with a nonlinear dynamical system. The dynamical system is composed of a pool of adaptive frequency oscillators with negative mean-field coupling. For the frequency analysis, the synchronization and adaptation properties of the component oscillators are exploited. The frequency spectrum of the signal is reflected in the statistics of the intrinsic frequencies of the oscillators. The frequency analysis is completely embedded in the dynamics of the system. Thus, no pre-processing or additional parameters, such as time windows, are needed. Representative results of the numerical integration of the system are presented. It is shown, that the oscillators tune to the correct frequencies for both discrete and continuous spectra. Due to its dynamic nature the system is also capable to track non-stationary spectra. Further, we show that the system can be modeled in a probabilistic manner by means of a nonlinear Fokker-Planck equation. The probabilistic treatment is in good agreement with the numerical results, and provides a useful tool to understand the underlying mechanisms leading to convergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号