首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The controlled folding of a single polymer chain is for the first time realized by metal‐ complexation. α,ω‐Bromine functional linear polymers are prepared via activators regenerated by electron transfer (ARGET) ATRP (,SEC = 5900 g mol−1, Đ = 1.07 and 12 000 g mol−1, Đ = 1.06) and the end groups of the polymers are subsequently converted to azide functionalities. A copper‐catalyzed azide–alkyne cycloaddition (CuAAC) reaction is carried out in the presence of a novel triphenylphosphine ligand and the polymers to afford homotelechelic bis‐triphenylphosphine polymeric‐macroligands (MLs) (,SEC = 6600 g mol−1, Đ = 1.07, and 12 800 g mol−1, Đ = 1.06). Single‐chain metal complexes (SCMCs) are formed in the presence of Pd(II) ions in highly diluted solution at ambient temperature. The results derived via 1H and 31P{1H} NMR experiments, SEC, and DLS unambiguously evidence the efficient formation of SCMCs via metal ligand complexation.

  相似文献   


2.
The direct synthesis of structurally well‐defined protic polymeric ionic liquid (PIL) with controlled molecular weight and molecular weight distribution is examined using N,N‐diethyl‐N‐(2‐methacryloylethyl) ammonium bis(tri‐fluoromethylsulfonyl)imide (DEMH‐TFSI) as a monomer. Three polymerization methods, namely, atom transfer radical polymerization (ATRP), activators regenerated by electron transfer (ARGET)‐ATRP, and organotellurium‐mediated living radical polymerization (TERP) are employed in this study. While the polymerization by ATRP is slow and does not reach high monomer conversion that under ARGET‐ATRP and TERP proceeds smoothly and affords structurally well‐defined poly(DEMH‐TFSI)s. TERP is especially efficient for the control and poly(DEMH‐TFSI)s with low to high molecular weights ( = 49 100–392 500) and narrow molecular weight distributions (/ = 1.17–1.46) are obtained. These results represent the first example of synthesis of a structurally well‐defined protic, ammonium PIL by direct polymerization of the protic ionic liquid monomer. The polymerization of N,N‐diethyl‐N‐(2‐methacryloylethyl)‐N‐methylammonium bis(trifluoromethylsulfonyl)imide (DEMM‐TFSI), which possesses a quaternary ammonium salt, also proceeds in a highly controlled manner under TERP conditions. A diblock copolymer, polystyrene‐block‐poly(DEMH‐TFSI), is also successfully synthesized by TERP.

  相似文献   


3.
This work describes the synthesis of π‐conjugated polymers possessing arylene and 1,3‐butadiene alternating units in the main chain by the reaction of α,β‐unsaturated ester/nitrile containing γ‐H with aromatic/heteroaromatic aldehyde compound. By using 4‐(4‐formylphenyl)‐2‐butylene acid ethyl ester as a model monomer, the different polymerization conditions, including catalyst, catalyst amount, and solvent, are optimized. The polymerization of 4‐(4‐formylphenyl)‐2‐butylene acid ethyl ester is carried out by refluxing in ethanol for 72 h with 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU) as a catalyst to give a 1,3‐butadiene‐containing π‐conjugated polymer, poly(phenylene‐1,3‐butadiene), in 84.3% yield with and / (PDI) estimated as 6172 and 1.65, respectively. Based on this new methodology, a series of π‐conjugated polymers containing 1,3‐butadiene units with different substituents are obtained in high yields. A possible mechanism is proposed for the polymerization through a six‐membered ring transition state and then a 1,5‐H shift intermediate.

  相似文献   


4.
The ruthenium benzimidazolylidene‐based N‐heterocyclic carbene (NHC) complex 4 catalyzes the direct dehydrogenative condensation of primary alcohols into esters and primary alcohols in the presence of amines to the corresponding amides in high yields. This efficient new catalytic system shows a high selectivity towards the conversion of diols to polyesters and of a mixture of diols and diamines to polyamides. The only side product formed in this reaction is molecular hydrogen. Remarkable is the conversion of hydroxytelechelic polytetrahydrofuran ( = 1000 g mol−1)—a polydispers starting material—into a hydrolytically degradable polyether with ester linkages ( = 32 600 g mol−1) and, in the presence of aliphatic diamines, into a polyether with amide linkages in the back bone ( = 16 000 g mol−1).

  相似文献   


5.
A novel strategy for the incorporation of carbon dioxide into polymers is introduced. For this purpose, the Ugi five‐component condensation (Ugi‐5CC) of an alcohol, CO2, an amine, an aldehyde, and an isocyanide is used to obtain step‐growth monomers. Polymerization via thiol‐ene reaction or polycondensation with diphenyl carbonate gives diversely substituted polyurethanes or alternating polyurethane‐polycarbonates, respectively. Furthermore, the application of 1,12‐diaminododecane and 1,6‐diisocyanohexane as bifunctional components in the Ugi‐5CC directly results in the corresponding polyamide bearing methyl carbamate side chains ( = 19 850 g mol−1). The latter polymer is further converted into the corresponding polyhydantoin in a highly straightforward fashion.

  相似文献   


6.
Linear poly(4‐tert‐butoxystyrene)‐b‐poly(4‐vinylpyridine) (PtBOS‐b‐P4VP) diblock copolymers are synthesized using reversible addition–fragmentation chain transfer polymerization. The self‐assembly of four different PtBOS‐b‐P4VP diblock copolymers is studied using small‐angle X‐ray scattering and transmission electron microscopy and a number of interesting observations are made. A tBOS62b‐4VP28 diblock copolymer with a weight fraction P4VP of 0.21 shows a disordered morphology of P4VP spheres with liquid‐like short‐range order despite an estimated value of of the order of 50. Increasing the length of the 4VP block to tBOS62‐b‐4VP199 results in a diblock copolymer with a weight fraction P4VP of 0.66. It forms a remarkably well‐ordered lamellar structure. Likewise, a tBOS146b‐4VP120 diblock copolymer with a weight fraction P4VP of 0.33 forms an extremely well‐ordered hexagonal structure of P4VP cylinders. Increasing the P4VP block of this block copolymer to tBOS146b‐4VP190 with a weight fraction P4VP of 0.44 results in a bicontinuous gyroid morphology despite the estimated strong segregation of . These results are discussed in terms of the architectural dissimilarity of the two monomers, characterized by the presence of the large side group of PtBOS, and the previously reported value of the interaction parameter, , for this polymer pair.

  相似文献   


7.
A commercially available palladium N‐heterocyclic carbene (Pd‐NHC) precatalyst is used to initiate chain‐growth polymerization of 2‐bromo‐3‐hexyl‐5‐trimethylstannylthiophene. The molecular weight of the resultant poly(3‐hexylthiophene) can be modulated (7 to 73 kDa, Đ = 1.14 to 1.53) by varying the catalyst concentration. Mass spectrometry data confirm control over the polymer end groups and 1H NMR spectroscopy reveals that the palladium catalyst is capable of “ring‐walking”. A linear relationship between Mn and monomer conversion is observed. Atomic force microscopy and X‐ray scattering verify the regioregular nature of the resultant polythiophene.

  相似文献   


8.
An interesting cooperation between Candida antarctica Lipase B (CAL‐B) and alkaline protease from Bacillus subtilis (BSP) in the copolymerization of bulky ibuprofen‐containing hydroxyacid methyl ester (HAEP) and ε‐caprolactone (ε‐CL) is observed. This cooperation improved the of the polymers from 3130 (CAL‐B) to 9200 g mol–1 (CAL‐B/BSP). Experimental results clearly indicate that CAL‐B mainly catalyzes the ring‐opening polymerization (ROP) of ε‐CL under the initiation of HAEP to form the homopolymer of ε‐CL, while BSP catalyzes the subsequent polycondensation of the ROP product to yield the copolymer with increased molecular weight. Furthermore, using suitable chemo‐enzymatic methods, valuable polyesters with chiral (R)‐ or (S)‐ibuprofen pendants can be tailor‐made.

  相似文献   


9.
Diselenide‐containing polymers are facilely synthesized from polymers prepared by atom transfer radical polymerization (ATRP). Benefiting from the ATRP technology, this protocol provides a flexible route for controlling the polymer structure, which allows for a great variety of architectures of selenium‐containing polymer materials for applications in various fields. The oxidative and reductive responsive behavior of the obtained diselenide‐containing polymers is also investigated.

  相似文献   


10.
Iron‐mediated atom transfer radical polymerization (ATRP) has gained extensive attention because of the superiority of iron catalysts, such as low toxicity, abundant reserves, and good biocompatibility. Herein, a practical iron catalyst recycling system, photoinduced iron‐based water‐induced phase separable catalysis ATRP with initiators for continuous activator regeneration, at room temperature is developed for the first time. In this polymerization system, the polymerization is conducted in homogenous solvents consisting of p‐xylene and ethanol, using commercially available 5,10,15,20‐tetraphenyl‐21H,23H‐porphine iron(III) chloride as the iron catalyst, ethyl 2‐bromophenylacetate as the ATRP initiator, 2,4,6‐trimethylbenzoyl diphenylphosphine oxide as the photoinitiator, and poly(ethylene glycol) methyl ether methacrylate as the model hydrophilic monomer. After polymerization, a certain amount of water is added to induce the phase separation so that the catalyst can be separated and recycled in p‐xylene phase with very low residual metal complexes (<12 ppm) in the resultant polymers even after six times recycle experiments.

  相似文献   


11.
Surface‐initiated photo‐induced copper‐mediated radical polymerization is employed to graft a wide range of polyacrylate brushes from silicon substrates at extremely low catalyst concentrations. This is the first time that the controlled nature of the reported process is demonstrated via block copolymer formation and re‐initiation experiments. In addition to unmatched copper catalyst concentrations in the range of few ppb, film thicknesses up to almost 1 μm are achieved within only 1 h.

  相似文献   


12.
The chemical control of cell division has attracted much attention in the areas of single cell‐based biology and high‐throughput screening platforms. A mussel‐inspired cytocompatible encapsulation method for achieving a “cell‐division control” with cross‐linked layer‐by‐layer (LbL) shells is developed. Catechol‐grafted polyethyleneimine and hyaluronic acid are chosen as polyelectrolytes for the LbL process, and the cross‐linking of polyelectrolytes is performed at pH 8.5. Cell division is controlled by the number of the LbL nanolayers and cross‐linking reaction. We also suggest a new measuring unit, , for quantifying “cell‐division timing” based on microbial growth kinetics.

  相似文献   


13.
Vinyl acetate is polymerized in the living way under the irradiation of blue light‐emitting diodes (LEDs) or sunlight without photocatalyst at ambient temperature. 2‐(Ethoxycarbonothioyl)sulfanyl propanoate is exclusively added and acts as initiator and chain transfer agent simultaneously in the current system. Poly(vinyl acetate) with well‐regulated molecular weight and narrow molecular weight distribution (Đ < 1.30) is synthesized. Near quantitative end group fidelity of polymer is demonstrated by nuclear magnetic resonance (NMR) and matrix‐assisteed laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS).

  相似文献   


14.
Atom transfer radical polymerization (ATRP) catalyzed by high oxidation state metal salts of FeX3 is developed for the first time in the absence of both external initiator and reducing agent. Methyl methacrylate (MMA) and styrene are polymerized successfully using FeX3/Phosphorous ligands with well‐controlled molecular weight distributions (=1.5). The molecular weight of the polymers increases with monomer consumption with the progress of time and the polymerization behaviors show a decent ATRP trend. Activators and initiators are suggested to generate in situ by the addition reaction of MMA and one equivalent of FeX3. The PMMA synthesized from without‐initiator system is characterized by 1H, 13C and DEPT (distortionless enhancement by polarization transfer nuclear magnetic resonance) nuclear magnetic resonance spectroscopy. Chain extension and copolymerization experiments prove the livingness of the obtained polymer.

  相似文献   


15.
A novel diblock copolymer consisting of poly(vinylferrocene) (PVFc) and poly(N,N‐diethylacrylamide) (PDEA) is synthesized via a combination of anionic and RAFT polymerization. The use of a novel route to hydroxyl‐end‐functionalized metallopolymers in anionic polymerization and subsequent esterification with a RAFT agent leads to a PVFc macro‐CTA ( = 3800 g mol−1; Đ = 1.17). RAFT polymerization with DEA affords block copolymers as evidenced by 1H NMR spectroscopy as well as size exclusion chromatography (6400 ≤ ≤ 33700 g mol−1; 1.31 ≤ Đ 1.28). Self‐assembly of the amphiphilic block copolymers in aqueous solution leads to micelles as shown via TEM. Importantly, the distinct thermo‐responsive and redox‐responsive character of the blocks is probed via dynamic light scattering and found to be individually and repeatedly addressable.

  相似文献   


16.
It is well known that the recently developed photoinduced metal‐free atom transfer radical polymerization (ATRP) has been considered as a promising methodology to completely eliminate transition metal residue in polymers. However, a serious problem needs to be improved, namely, large amount of organic photocatalysts should be used to keep the controllability over molecular weights and molecular weight distributions. In this work, a novel photocatalyst 1,2,3,5‐tetrakis(carbazol‐9‐yl)‐4,6‐dicyanobenzene (4CzIPN) with strong excited state reduction potential is successfully used to mediate a metal‐free ATRP of methyl methacrylate just with parts per million (ppm) level usage under irradiation of blue light emitting diode at room temperature, using ethyl α‐bromophenyl‐acetate as a typical initiator with high initiator efficiency. The polymerization kinetic study, multiple controlled “on–off” light switching cycle regulation, and chain extension experiment confirm the “living”/controlled features of this promising photoinduced metal‐free ATRP system with good molecular weight control in the presence of ppm level photocatalyst 4CzIPN.

  相似文献   


17.
In this communication, a mild, efficient, and generalized polycondensation route is developed for poly(disulfide)s from commercially available monomers 2,2′‐dithiodipyridine and 1,6‐hexanedithiol. Using the stoichiometric imbalance between the two monomers, it is possible to produce telechelic poly(disulfide)s of predictable molecular weight with reactive pyridyl disulfide groups at both the terminals of the chain. The two terminal pyridyl disulfide groups can be quantitatively replaced by a functional thiol using selective thiol‐disulfide exchange and thus produces functional telechelic poly(disulfide)s, which can be used as a macroinitiator to initiate ring‐opening poly­merization of a cyclic lactide monomer generating an ABA‐type triblock copolymer with degradable B block.

  相似文献   


18.
In this research, the synthesis of boron‐ketoiminate‐containing polymers is reported with large molecular weights ( = 20 000) and their optical properties are examined by UV–vis absorption and photoluminescence spectrometries. It is shown that the polymers exhibit strong emission both in the solution and solid states (Φ PL,THF = 0.46–0.80, Φ PL,film = 0.13–0.38). These optical properties can be explained by a donor–acceptor interaction between the boron ketoiminate and the electron‐donating comonomer such as fluorene or bithiophene. Furthermore, in the solid states, their emission colors can be successfully tuned from blue to orange by the substituents on the nitrogen atom with the difference of the steric hindrance (λ PL,THF = 464–546 nm, λ PL,film = 486–604 nm).

  相似文献   


19.
The preparation of multifunctional polymers and block copolymers by a straightforward one‐pot reaction process that combines enzymatic transacylation with light‐controlled polymerization is described. Functional methacrylate monomers are synthesized by enzymatic transacylation and used in situ for light‐controlled polymerization, leading to multifunctional methacrylate‐based polymers with well‐defined microstructure.

  相似文献   


20.
Sodium alginate (SA), acting as a trypsin inhibitor by means of electrostatic interaction, is studied. The half‐maximal inhibitory concentration (IC50 = 0.05 μg mL−1) of this natural anionic polymer is about 400 times lower than that of commercial soybean trypsin inhibitor (STI). Unlike the Ca2+‐deprivation mechanisms, its inhibition may be attributed to preventing the trypsin active site (TAS) from accessing the macromolecular substrates instead of denaturing it. SA is an efficient, innocuous, and cost‐effective inhibitory excipient that can be conveniently used in many peptide and protein dosage formulations.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号