首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The controlled folding of a single polymer chain is for the first time realized by metal‐ complexation. α,ω‐Bromine functional linear polymers are prepared via activators regenerated by electron transfer (ARGET) ATRP (,SEC = 5900 g mol−1, Đ = 1.07 and 12 000 g mol−1, Đ = 1.06) and the end groups of the polymers are subsequently converted to azide functionalities. A copper‐catalyzed azide–alkyne cycloaddition (CuAAC) reaction is carried out in the presence of a novel triphenylphosphine ligand and the polymers to afford homotelechelic bis‐triphenylphosphine polymeric‐macroligands (MLs) (,SEC = 6600 g mol−1, Đ = 1.07, and 12 800 g mol−1, Đ = 1.06). Single‐chain metal complexes (SCMCs) are formed in the presence of Pd(II) ions in highly diluted solution at ambient temperature. The results derived via 1H and 31P{1H} NMR experiments, SEC, and DLS unambiguously evidence the efficient formation of SCMCs via metal ligand complexation.

  相似文献   


2.
A direct and facile route toward semitelechelic polymers, end‐functionalized with palladated sulfur–carbon–sulfur pincer (PdII‐pincer) complexes is reported that avoids any post‐polymerization step. Key to our methodology is the combination of reversible addition‐fragmentation chain‐transfer (RAFT) polymerization with functionalized chain‐transfer agents. This strategy yields Pd end‐group‐functionalized materials with monomodal molar mass dispersities (Đ ) of 1.18–1.44. The RAFT polymerization is investigated using a PdII‐pincer chain‐transfer agent for three classes of monomers: styrene, tert‐butyl acrylate, and N‐isopropylacrylamide. The ensuing PdII‐pincer end‐functionalized polymers are analyzed using 1H NMR spectroscopy, gel‐permeation chromatography, and elemental analysis. The RAFT polymerization methodology provides a direct pathway for the fabrication of PdII‐pincer functionalized polymers with complete end‐group functionalization.

  相似文献   


3.
Photoinitiated reversible addition‐fragmentation chain transfer (RAFT) dispersion polymerization of 2‐hydroxypropyl methacrylate is conducted in water at low temperature using thermoresponsive copolymers of 2‐(2‐methoxyethoxy) ethyl methacrylate and oligo(ethylene glycol) methacrylate (Mn = 475 g mol−1) as the macro‐RAFT agent. Kinetic studies confirm that quantitative monomer conversion is achieved within 15 min of visible‐light irradiation (405 nm, 0.5 mW cm−2), and good control is maintained during the polymerization. The polymerization can be temporally controlled by a simple “ON/OFF” switch of the light source. Finally, thermoresponsive diblock copolymer nano‐objects with a diverse set of complex morphologies (spheres, worms, and vesicles) are prepared using this particular formulation.

  相似文献   


4.
The redox switchable formation of very well‐defined supramolecular graft polymers in aqueous solution driven by host–guest interactions between ferrocene (Fc) and cyclodextrin (CD) is presented. The Fc‐containing acrylic backbone copolymer (PDMA‐stat‐Fc) is prepared via reversible addition–fragmentation chain transfer (RAFT) copolymerization of N,N‐dimethyl­acrylamide (DMA) and the novel monomer N‐(ferrocenoylmethyl)acrylamide (NFMA). Via the RAFT process, copolymers containing variable Fc ratios (5‐10 mol%) are prepared, affording polymers of molecular masses of close to 11 000 g mol−1 and molar mass dispersities (Đ) of 1.2. The β‐cyclodextrin (β‐CD) containing building block is synthesized via RAFT‐polymerization, too, in order to afford a polymer with well‐defined molecular mass and low dispersity ( = 10 300 g mol−1, Đ = 1.1), employing a propargyl‐functionalized chain transfer agent for the polymerization of N,N‐diethylacrylamide (DEA). The polymerization product is subsequently terminated with β‐CD via the regiospecific copper (I)‐catalyzed 1,3‐cycloaddition (PDEA‐βCD). Host–guest interactions between Fc and CD lead to the formation of supramolecular graft‐polymers, verified via nuclear Overhauser enhancement spectroscopy (NOESY). Importantly, their redox‐responsive character is clearly confirmed via cyclic voltammetry (CV). The self‐assembly of the statistical Fc‐containing lateral polymer chain in aqueous solution leads to mono‐ and multi‐core micelle‐aggregates evidenced via TEM. Only diffused cloud‐like, non‐spherical nanostructures are observed after addition of PDEA‐βCD (TEM).

  相似文献   


5.
The ruthenium benzimidazolylidene‐based N‐heterocyclic carbene (NHC) complex 4 catalyzes the direct dehydrogenative condensation of primary alcohols into esters and primary alcohols in the presence of amines to the corresponding amides in high yields. This efficient new catalytic system shows a high selectivity towards the conversion of diols to polyesters and of a mixture of diols and diamines to polyamides. The only side product formed in this reaction is molecular hydrogen. Remarkable is the conversion of hydroxytelechelic polytetrahydrofuran ( = 1000 g mol−1)—a polydispers starting material—into a hydrolytically degradable polyether with ester linkages ( = 32 600 g mol−1) and, in the presence of aliphatic diamines, into a polyether with amide linkages in the back bone ( = 16 000 g mol−1).

  相似文献   


6.
A one‐pot method is introduced for the successful synthesis of narrow‐distributed (Đ = 1.22) vinyl polymer with both ultrahigh molecular weight (UHMW) (M w = 1.31 × 106 g mol−1) and micro‐/nanomorphology under mild conditions. The method involves the following four stages: homogeneous polymerization, polymerization‐induced self‐assembly (PISA), PISA and reorganization, and PISA and multiple reorganizations. The key points to the production of UHMW polystyrene are to minimize radical termination by segregating radicals in different nanoreactors and to ensure sufficient chain propagation by promoting further reorganizations of these reactors in situ. This method therefore endows polymeric materials with the outstanding properties of both UHMW and tunable micro‐/nanoparticles under mild conditions in one pot.

  相似文献   


7.
A commercially available palladium N‐heterocyclic carbene (Pd‐NHC) precatalyst is used to initiate chain‐growth polymerization of 2‐bromo‐3‐hexyl‐5‐trimethylstannylthiophene. The molecular weight of the resultant poly(3‐hexylthiophene) can be modulated (7 to 73 kDa, Đ = 1.14 to 1.53) by varying the catalyst concentration. Mass spectrometry data confirm control over the polymer end groups and 1H NMR spectroscopy reveals that the palladium catalyst is capable of “ring‐walking”. A linear relationship between Mn and monomer conversion is observed. Atomic force microscopy and X‐ray scattering verify the regioregular nature of the resultant polythiophene.

  相似文献   


8.
For most stimuli‐responsive polymer materials (SRPMs), such as polymer gels, micelles, and brushes, the responsive mechanism is based on the solubility or compatibility with liquid media. That basis always results in distorting or collapsing the material's appearance and relies on external liquids. Here, a novel kind of SRPMs is proposed. Unlike most SRPMs, liquid is stored within special domains rather than expelled, so it is deforming‐free and relying on no external liquid, which is referred to as self‐storage SRPMs (SS‐SRPMs). The facile and universal route to fabricate SS‐SRPMs allows for another novel family of SRPMs. Furthermore, it is validated that SS‐SRPMs can drastically respond to outside temperature like switchers, especially for optical and electrochemical responses. Those features hold prospects for applications in functional devices, such as smart optical lenses or anti‐self‐discharge electrolytes for energy devices.

  相似文献   


9.
This work describes the synthesis of π‐conjugated polymers possessing arylene and 1,3‐butadiene alternating units in the main chain by the reaction of α,β‐unsaturated ester/nitrile containing γ‐H with aromatic/heteroaromatic aldehyde compound. By using 4‐(4‐formylphenyl)‐2‐butylene acid ethyl ester as a model monomer, the different polymerization conditions, including catalyst, catalyst amount, and solvent, are optimized. The polymerization of 4‐(4‐formylphenyl)‐2‐butylene acid ethyl ester is carried out by refluxing in ethanol for 72 h with 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU) as a catalyst to give a 1,3‐butadiene‐containing π‐conjugated polymer, poly(phenylene‐1,3‐butadiene), in 84.3% yield with and / (PDI) estimated as 6172 and 1.65, respectively. Based on this new methodology, a series of π‐conjugated polymers containing 1,3‐butadiene units with different substituents are obtained in high yields. A possible mechanism is proposed for the polymerization through a six‐membered ring transition state and then a 1,5‐H shift intermediate.

  相似文献   


10.
A simple strategy is provided to construct a novel pH‐ and sugar‐induced shape memory hydrogel based on dynamic phenylboronic acid (PBA)–diol interactions formed by PBA‐modified sodium alginate (Alg‐PBA) and poly(vinyl alcohol) (PVA). The dynamic PBA–diol ester bonds serve as temporary cross‐links and stabilize the deformed shape of the hydrogel. The disassociation of the PBA–diol ester bonds is explored in acidic conditions and aqueous solutions of glucose and fructose, which endow the hydrogel with shape memory performances.

  相似文献   


11.
Redox‐cleavable mikto‐arm star polymers are prepared by an “arm‐first” approach involving copolymerization of a dimethacrylate mediated by a mixture of macroRAFT agents. Thus, RAFT copolymerization of the monomers BMA, DMAEMA, and OEGMA, with the disulfide dimethacrylate cross‐linker (DSDMA), bis(2‐methacryloyl)oxyethyl disulfide, mediated by a 1:1:1 mixture of three macroRAFT agents with markedly different properties [hydrophilic, poly[oligo(ethylene glycol) methacrylate]—P(OEGMA)8–9; cationizable, poly[2‐(dimethylamino)ethyl methacrylate]—P(DMAEMA); hydrophobic, poly(n‐butyl methacrylate)—P(BMA)] provides low dispersity mikto‐arm star polymers. Good control (Đ < 1.3) is observed for the target P(DMAEMA)/P(OEGMA)/P(BMA) (3:3:1) mikto‐arm star, a double hydrophilic P(DMAEMA)/P(OEGMA) (3:3) mikto‐arm star and a hydrophobic P(BMA) homo‐arm star. However, Đ for the target mikto‐arm stars increases with an increase in either the ratio [DSDMA]:[total macroRAFT] or the fraction of hydrophobic P(BMA) macroRAFT agent. The quaternized mikto‐arm star in dilute aqueous solution shows a monomodal particle size distribution and an average size of ≈145 nm.

  相似文献   


12.
A versatile one‐pot strategy for the preparation of reversibly cross‐linked polymer‐coated mesoporous silica nanoparticles (MSNs) via surface reversible addition–fragmentation chain transfer (RAFT) polymerization is presented for the first time in this paper. The less reactive monomer oligo(ethylene glycol) acrylate (OEGA) and the more reactive cross‐linker N,N′‐cystaminebismethacrylamide (CBMA) are chosen to be copolymerized on the external surfaces of RAFT agent‐functionalized MSNs to form the cross‐linked polymer shells. Owing to the reversible cleavage and restoration of disulfide bonds via reduction/oxidation reactions, the polymer shells can control the on/off switching of the nanopores and regulate the drug loading and release. The redox‐responsive release of doxorubicin (DOX) from this drug carrier is realized. The protein adsorption, in vitro cytotoxicity assays, and endocytosis studies demonstrate that this biocompatible vehicle is a potential candidate for delivering drugs. It is expected that this versatile grafting strategy may help fabricate satisfying MSN‐based drug delivery systems for clinical application.

  相似文献   


13.
The chemical control of cell division has attracted much attention in the areas of single cell‐based biology and high‐throughput screening platforms. A mussel‐inspired cytocompatible encapsulation method for achieving a “cell‐division control” with cross‐linked layer‐by‐layer (LbL) shells is developed. Catechol‐grafted polyethyleneimine and hyaluronic acid are chosen as polyelectrolytes for the LbL process, and the cross‐linking of polyelectrolytes is performed at pH 8.5. Cell division is controlled by the number of the LbL nanolayers and cross‐linking reaction. We also suggest a new measuring unit, , for quantifying “cell‐division timing” based on microbial growth kinetics.

  相似文献   


14.
Linear poly(4‐tert‐butoxystyrene)‐b‐poly(4‐vinylpyridine) (PtBOS‐b‐P4VP) diblock copolymers are synthesized using reversible addition–fragmentation chain transfer polymerization. The self‐assembly of four different PtBOS‐b‐P4VP diblock copolymers is studied using small‐angle X‐ray scattering and transmission electron microscopy and a number of interesting observations are made. A tBOS62b‐4VP28 diblock copolymer with a weight fraction P4VP of 0.21 shows a disordered morphology of P4VP spheres with liquid‐like short‐range order despite an estimated value of of the order of 50. Increasing the length of the 4VP block to tBOS62‐b‐4VP199 results in a diblock copolymer with a weight fraction P4VP of 0.66. It forms a remarkably well‐ordered lamellar structure. Likewise, a tBOS146b‐4VP120 diblock copolymer with a weight fraction P4VP of 0.33 forms an extremely well‐ordered hexagonal structure of P4VP cylinders. Increasing the P4VP block of this block copolymer to tBOS146b‐4VP190 with a weight fraction P4VP of 0.44 results in a bicontinuous gyroid morphology despite the estimated strong segregation of . These results are discussed in terms of the architectural dissimilarity of the two monomers, characterized by the presence of the large side group of PtBOS, and the previously reported value of the interaction parameter, , for this polymer pair.

  相似文献   


15.
The synthesis of hybrid bioconjugates via the ring‐opening polymerization (ROP) of N‐carboxyanhydrides (NCAs) using a synthetic macroinitiator is described. Poly(n‐butyl acrylate), polystyrene, and poly(N‐isopropyl acrylamide) are synthesized (polydisperity index, Đ < 1.1) using reversible addition–fragmentation chain transfer (RAFT) as the synthetic tool. A phthalimidomethyl trithiocarbonate RAFT chain transfer agent is used to prepare well‐defined, end‐functional polymers, which after deprotection result in amine terminal macroinitiators. The subsequent initiating systems could successfully be chain extended with ε‐benzyloxycarbonyl‐l ‐lysine or γ‐benzyl‐l ‐glutamate as the NCAs to produce a library of polymer–polypeptide conjugates. In doing so, a novel procedure for directly synthesizing bioconjugates via a non‐modular route without the need for excessive purification and isolation steps is described.

  相似文献   


16.
A novel photo‐induced homogeneous atom transfer radical polymerization (ATRP) system is constructed using an organic copper salt (Cu(SC(S)N(C2H5)2)2) as a photo‐induced catalyst at 30 °C. Herein, N,N,N′,N′′,N′′‐pentamethyldiethylenetriamine (PMDETA) is used as a ligand, ethyl 2‐bromophenylacetate (EBPA) as an ATRP initiator, and (2,4,6‐trimethylbenzoyl) diphenylphosphine oxide (TPO) as a photo‐induced radical initiator to establish an ICAR (initiators for continuous activator regeneration) ATRP using methyl methacrylate (MMA) as a modal monomer. The effect of the concentration of the organic copper on the polymerization is investigated in detail. It is found that well‐controlled polymerization can be obtained even with the amount of (Cu(SC(S)N(C2H5)2)2 decreasing to a 1.56 ppm level, with the molecular weight of the resultant polymers increasing linearly with monomer conversion while maintaining a narrow molecular weight distribution (/ < 1.3).

  相似文献   


17.
The hierarchical self‐assembly of an amphiphilic block copolymer, poly(N,N‐dimethylacrylamide)‐block‐polystyrene with a very short hydrophilic block (PDMA10b‐PS62), in large granular nanoparticles is reported. While these nanoparticles are stable in water, their disaggregation can be induced either mechanically (i.e., by applying a force via the tip of the cantilever of an atomic force microscope (AFM)) or by partial hydrolysis of the acrylamide groups. AFM force spectroscopy images show the rupture of the particle as a combination of collapse and flow, while scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images of partly hydrolyzed nanoparticles provide a clear picture of the granular structure.

  相似文献   


18.
A simple polymerization of trichlorophosphoranimine (Cl3P = N−SiMe3) mediated by functionalized triphenylphosphines is presented. In situ initiator formation and the subsequent polymerization progress are investigated by 31P NMR spectroscopy, demonstrating a living cationic polymerization mechanism. The polymer chain lengths and molecular weights of the resulting substituted poly(organo)phosphazenes are further studied by 1H NMR spectroscopy and size exclusion chromatography. This strategy facilitates the preparation of polyphosphazenes with controlled molecular weights and specific functional groups at the α‐chain end. Such well‐defined, mono‐end‐functionalized polymers have great potential use in bioconjugation, surface modification, and as building blocks for complex macromolecular constructs.

  相似文献   


19.
An interesting cooperation between Candida antarctica Lipase B (CAL‐B) and alkaline protease from Bacillus subtilis (BSP) in the copolymerization of bulky ibuprofen‐containing hydroxyacid methyl ester (HAEP) and ε‐caprolactone (ε‐CL) is observed. This cooperation improved the of the polymers from 3130 (CAL‐B) to 9200 g mol–1 (CAL‐B/BSP). Experimental results clearly indicate that CAL‐B mainly catalyzes the ring‐opening polymerization (ROP) of ε‐CL under the initiation of HAEP to form the homopolymer of ε‐CL, while BSP catalyzes the subsequent polycondensation of the ROP product to yield the copolymer with increased molecular weight. Furthermore, using suitable chemo‐enzymatic methods, valuable polyesters with chiral (R)‐ or (S)‐ibuprofen pendants can be tailor‐made.

  相似文献   


20.
A simple process is developed to fabricate metallo‐supramolecular nanogels (MSNs) by the metallo‐supramolecular‐coordinated interaction between histidine and iron‐meso‐tetraphenylporphin. MSNs are composed of histidine‐modified dextran (DH) and iron‐meso‐tetraphenylporphin (Fe–Por) and exhibit excellent biocompatibility and stability. MSNs show pH responsiveness in the intracellular mildly acidic environment, which has great potential for acid‐triggered drug release delivery. In vitro drug release profiles demonstrate that the pH‐dependent disassembly of MSNs to histidine and Por results in a quicker release rate of loaded‐DOX at pH 5.3, while at pH 7.4 MSNs could hinder the release of loaded‐DOX due to the enhanced stability of MSNs.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号