首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
《中国化学快报》2023,34(3):107621
As important emerging contaminants, antibiotics have caused potential hazards to the ecological environment and human health due to their extensive production and consumption. Among various techniques for removing antibiotics from wastewater, H2O2-based advanced oxidation processes (AOPs) have received increasing attention due to their fast reaction rate and strong oxidation capability. Hence this review critically discusses: (i) Recent research progress of AOPs with the addition of H2O2 for antibiotics removal through different methods of H2O2 activation; (ii) recent advances in AOPs that can in-situ generate and activate H2O2 for antibiotics removal; (iii) H2O2-based AOPs as a combination with other techniques for the degradation and mineralization of antibiotics in wastewater. Future perspectives about H2O2-based AOPs are also presented to grasp the future research trend in the area.  相似文献   

2.
Ultraviolet (UV) photolysis of sixteen pharmaceutical compounds (PhCs) in mixed solutions with four types of water and two sets of UV radiation was investigated. UVC (254 nm) photolysis was ineffective at eliminating a large number of PhCs while a big number of them were refractory. However, vacuum UV (VUV: 185 nm + 254 nm) photolysis in the same experimental conditions eliminated the PhCs almost completely. The eliminations in ultrapure water (UPW), tap water (TW) and Neya River water (NRW) and their organic/inorganic contents were inversely correlated, which was more evident in VUV photolysis. Natural organic matter (NOM) in NRW did not have an impact in indirect photolysis, but effluent organic matter (EfOM) in secondary-treated effluent (NWTPE) enhanced indirect photolysis, which was more evident in VUV photolysis underlining the point that radiation wavelength/intensity can be a limiting factor in organic-rich waters. Moreover, VUV photolysis was far superior (90% mineralization) to UVC photolysis (10% mineralization) for PhCs mineralization. The greatly enhanced elimination and mineralization efficiencies observed for VUV photolysis were attributed to accelerated direct photolysis with 185 nm wavelength and indirect photolysis involving ·OH. The results demonstrated efficacy of VUV photolysis in wastewater treatment and its potential use as a tertiary treatment.   相似文献   

3.
Pharmaceuticals of different therapeutic classes are found in the environment. Captopril is used worldwide as an antihypertensive drug, and it has been found in the influent, effluent and secondary sludge of wastewater treatment plants. Advanced oxidation processes, such as direct photolysis (UV-C) and heterogeneous photocatalysis (TiO2/UV-C), are alternatives to enhance mineralisation of pharmaceuticals and their removal during water treatment. In this article, it was evaluated the degradation of captopril in aqueous solution induced by UV-C and TiO2/UV-C systems. The process focused on the identification and monitoring of the by-products formed under these conditions by applying direct-infusion electrospray ionisation high-resolution mass spectrometry in the negative ion mode (ESI(-)-HRMS) and high-performance liquid chromatography coupled to high-resolution mass spectrometry (HPLC/HRMS). To evaluate the by-products toxicity, acute ecotoxicity tests were performed with the crustacean Artemia salina, and the cytotoxicity was evaluated with (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay using HepG2 cells. It was observed by ESI(-)-HRMS that after 120 min of light exposure, there was almost complete removal of captopril, with 93.5% removal efficiency during photolysis and 99.9% during photocatalysis. At these conditions, the rate of mineralisation, by total organic carbon (TOC), was only 2.92% for photolysis and 9.09% for photocatalysis, evidencing the formation of degradation by-products. Nine by-products of captopril photodegradation were identified, and their respective chemical structure elucidations were proposed. The treated samples were nontoxic to A. salina and HepG2 cells, indicating that both oxidative treatments (photocatalytic or photolytic processes) can be conveniently employed to remove captopril from aqueous media.  相似文献   

4.
Advanced Oxidation Processes (AOPs) for wastewater treatment are gaining more importance since biological treatment plants are often not sufficient for highly contaminated or toxic wastewaters. In order to find out the most efficient and cheap AOP, investigations were concentrated on methods that can use sunlight. The systems TiO2/UV, Fe2+/H2O2/UV (Photo-Fenton reaction), Fe2+/O2/UV and Fe2+/O3/UV were compared. Since the Photo-Fenton system was the most effective, pilot plant experiments with industrial wastewaters and sunlight experiments were carried out. Finally a rough cost estimate shows that Photo-Fenton treatment with sunlight is far cheaper than other available AOPs, namely ozonization.  相似文献   

5.
Three priority pollutants, i.e. mono-, di-, and trichloroacetic acids, were degraded by the conventional Fenton AOP system (Fe2+ and H2O2). The results obtained suggest that the degradation decreased in the order: monochloroacetic, dichloroacetic, and trichloroacetic acid. The best of advanced oxidation processes (AOPs) for the degradation of trichloroacetic acid was reductive dechlorination with the use of zero-valent iron (Fe°). The results of Escherichia coli toxicity tests revealed that the reagents’ toxicity after the Fenton treatment process was decreased.  相似文献   

6.
The nature of the S? H???S hydrogen‐bonding interaction in the H2S dimer and its structure has been the focus of several theoretical studies. This is partly due to its structural similarity and close relationship with the well‐studied water dimer and partly because it represents the simplest prototypical example of hydrogen bonding involving a sulfur atom. Although there is some IR data on the H2S dimer and higher homomers from cold matrix experiments, there are no IR spectroscopic reports on S? H???S hydrogen bonding in the gas phase to‐date. We present experimental evidence using VUV ionization‐detected IR‐predissociation spectroscopy (VUV‐ID‐IRPDS) for this weak hydrogen‐bonding interaction in the H2S dimer. The proton‐donating S? H bond is found to be red‐shifted by 31 cm?1. We were also able to observe and assign the symmetric (ν1) stretch of the acceptor and an unresolved feature owing to the free S? H of the donor and the antisymmetric (ν3) SH stretch of the acceptor. In addition we show that the heteromolecular H2S–MeOH complex, for which both S? H???O and O? H???S interactions are possible, is S‐H???O bound.  相似文献   

7.
In the present study, H2O2/UV-C, Fenton and photo-Fenton treatment of 2,4-dichlorophenol was compared in terms of oxidation products and acute toxicity. The oxidation products were identified by gas chromatography-mass spectroscopy, high performance liquid chromatography and ion chromatography, whereas changes in acute toxicity were evaluated by the Vibrio fischeri luminescence inhibition assay. H2O2/UV-C and photo-Fenton processes ensured complete 2,4-dichlorophenolremoval, detoxification and significant mineralization. Hydroquinone and formic acid were identified as the common oxidation products of the studied advanced oxidation processes investigated. 3,5-dichloro-2-hydroxybenzaldehyde, phenol, 4-chlorophenol and 2,5-dichlorohydroquinone were identified as the additional H2O2/UV-C oxidation products of 2,4-dichlorophenol. Acute toxicity decreased with decreasing 2,4-dichlorophenol and increasing chloride release.  相似文献   

8.
S,S′-bis(2-pyridylmethyl)-1,2-thioethane (bpte) reacts with MCl2 (M = Co, Ni, and Fe) to give three complexes, namely, [CoII(bpte)Cl2] ( 1 ), [NiII(bpte)Cl2] ( 2 ), and [FeII(bpte)Cl2] ( 3 ), respectively. They all act as catalysts for proton or water reduction to dihydrogen via electrolysis or photolysis. Under an overpotential of 837.6 mV, the electrolysis of a neutral buffer with complex 1 , 2 , or 3 can provide 418 (±3), 555 (±3), and 243 (±3) moles of hydrogen per mole of catalyst per hour (mol H2/mol catalyst/h), respectively. Under blue light, together with a photosensitizer and ascorbic acid (H2A) as a sacrificial electron donor, the photolysis of an aqueous solution (pH 4.5) containing complex 1 , 2 , or 3 can afford 9060 (±5), 24,900 (±5), and 10,630 (±5) moles H2 per mole of catalyst (mol of H2 [mol of cat]−1) during 83-h irradiation with an average apparent quantum yield of 7.1%, 24%, and 10%, respectively. The results show that the nickel complex [NiII(bpte)Cl2] exhibits a more efficient activity for hydrogen generation than the iron or cobalt species. These findings may offer a new chemical paradigm for the design of efficient catalysts.  相似文献   

9.
A flash photolysis–resonance fluorescence technique was used to investigate the kinetics of the OH(X2Π) radical and O(3P) atom‐initiated reactions with CHI3 and the kinetics of the O(3P) atom‐initiated reaction with C2H5I. The reactions of the O(3P) atom with CHI3 and C2H5I were studied over the temperature range of 296 to 373 K in 14 Torr of helium, and the reaction of the OH (X2Π) radical with CHI3 was studied at T = 298 K in 186 Torr of helium. The experiments involved time‐resolved resonance fluorescence detection of OH (A2Σ+ → X2Π transition at λ = 308 nm) and of O(3P) (λ = 130.2, 130.5, and 130.6 nm) following flash photolysis of the H2O/He, H2O/CHI3/He, O3/He, and O3/C2H5I/He mixtures. A xenon vacuum UV (VUV) flash lamp (λ > 120 nm) served as a photolysis light source. The OH radicals were produced by the VUV flash photolysis of water, and the O(3P) atoms were produced by the VUV flash photolysis of ozone. Decays of OH radicals and O(3P) atoms in the presence of CHI3 and C2H5I were observed to be exponential, and the decay rates were found to be linearly dependent on the CHI3 and C2H5I concentrations. Measured rate coefficients for the reaction of O(3P) atoms with CHI3 and C2H5I are described by the following Arrhenius expressions (units are cm3 s?1): kO+C2H5I(T) = (17.2 ± 7.4) × 10?12 exp[?(190 ± 140)K/T] and kO+CHI3(T) = (1.80 ± 2.70) × 10?12 exp[?(440 ± 500)K/T]; the 298 K rate coefficient for the reaction of the OH radical with CHI3 is kOH+CHI3(298 K) = (1.65 ± 0.06) × 10?11 cm3 s?1. The listed uncertainty values of the Arrhenius parameters are 2σ‐standard errors of the calculated slopes by linear regression.  相似文献   

10.
The present review focused on selected, recent experimental progress of photodissociation dynamics of small molecules covering the vacuum ultraviolet (VUV) range from 6 eV to20 eV. These advancements come about due to the available laser based VUV light sources along with the developments of advanced experimental techniques, including the velocitymap imaging (VMI), H-atom Rydberg tagging time-of-flight (HRTOF) techniques, as well as the two-color tunable VUV-VUV laser pump-probe detection method. The applications of these experimental techniques have allowed VUV photodissociation studies of many diatomic and triatomic molecules to quantum state-to-state in detail. To highlight the recent accomplishments, we have summarized the results on several important molecular species, including H2 (D2, HD), CO, N2, NO, O2, H2O (D2O, HOD), CO2, and N2O. The detailed VUV photodissociation studies of these molecules are of astrochemical and atmospheric relevance. Since molecular photodissociation initiated by VUV excitation is complex and is often governed by multiple electronic potential energy surfaces, the unraveling of the complex dissociation dynamics requires state-to-state cross section measurements. The newly constructed Dalian Coherent Light Source (DCLS), which is capable of generating coherent VUV radiation with unprecedented brightness in the range of 50-150 nm, promises to propel the photodissociation experiment to the next level.  相似文献   

11.
The cost of membrane separation processes for removing CO2 and H2S from low-quality natural gas can be reduced for some concentration ranges of CO2 and H2S by utilizing concurrently two different types of polymer membranes, one with a high CO2/CH4 selectivity and the other with a high H2S/CH4 selectivity. The polymers considered in this exploratory study were 6FDA-HAB polyimide for the removal of CO2 and [poly(ether urethane urea)] (PEUU) for the removal of H2S. It was required that the concentrations of CO2 and H2S in low-quality natural gas be reduced to US pipeline specifications (≤2 mol% CO2 and ≤4 ppm H2S). Low-quality natural gas was simulated in this study by CH4/CO2/H2S mixtures containing up to 40 mol% CO2 and 10 mol% H2S. Twenty-seven membrane process configurations (PCs) were examined by computer simulations and optimized in order to determine the most economical configurations. Part I of this study considered only PCs without recycle streams [J. Hao, P.A. Rice, S.A. Stern, Upgrading low-quality natural gas with H2S- and CO2-selective polymer membranes. Part I. Process design and economics of membrane stages without recycle streams, J. Membr. Sci. 209 (2002) 177–206]. In Part II, reported below, the study was extended to two- and three-stage PCs with various recycle options. A sensitivity analysis was also made to determine the effects of variations in feed flow rate, feed pressure, membrane module cost, and wellhead price of natural gas on process economics. The economically optimal PCs were found to be either two membrane stages connected in series with or without recycle streams or single stages without recycle, depending on feed composition and selected operating conditions. The optimal two-stage PCs with recycle streams would utilize the H2S/CH4-selective membranes in the first stage and either the CO2/CH4 or the H2S/CH4-selective membranes, or both, in the second stage. Three-stage membrane PCs were not found to be economically competitive under the conditions assumed in this study.  相似文献   

12.
The catalytic wet oxidation process is the most attractive process for small-scale hydrogen sulfide (H2S) removal from natural gas. The catalytic wet oxidation process is anticipated to be cost effective and simple so that it can be used for treating sour gases containing small amounts of H2S and can be easily operated even in isolated sites. The development of effective catalyst is the key technology in the wet catalytic oxidation of H2S. The scale of operation for the process has to be flexible so its use will not be limited by the flow rates of the gas to be treated. The heterogeneous catalytic wet oxidation of H2S has been attempted on activated carbons, but the H2S removal capacity still shows the low removal efficiency. The catalytic wet oxidation of H2S was studied over Fe/MgO for an effective removal of H2S. In order to develop a sulfur removal technology, one has to know what surface species of catalyst are the most active. This article discusses the following systematic studies: (i) the catalytic preparation to disperse Fe metal well on MgO support for enhancing H2S removal capacity, (ii) the effect of the catalytic morphology on the activity of Fe/MgO for the H2S wet oxidation, (iii) the influence of precursor and support on the activity of Fe/MgO for catalytic wet oxidation of H2S to sulfur.  相似文献   

13.
VUV/UV photodegradation is a promising method that utilizes energetic photons and reactive oxygen species (ROS) generated via the photo-dissociation of H2O and O2 to degrade VOCs. In the paper, we investigated the efficiency of removal and mineralization in humid air and the effects of key factors. Toluene of 4–20 ppm can be almost completely removed in 60 s and mineralization efficiency is above 55% at 25 min. 185 nm ultraviolet light plays a key role in the rapid removal and mineralization of toluene. Appropriate amount of O2 and H2O promote the removal of toluene due to the generation of ROS. Based on the intermediates and degradation pathway analysis, it is found that in the presence of O2, degradation pathways of toluene are more abundant and fewer linear-chain aldehydes are produced, thus resulting in higher mineralization efficiency. This work highlights the importance of practical application of VUV/UV photodegradation in humid air.  相似文献   

14.
We studied the photolysis of a fluoroethylene–fluoropropylene copolymer (FEP) film by vacuum ultraviolet (VUV) radiation from a resonance Xe lamp at a wavelength of 147 nm and air pressures of 0.05 and 2.5 Torr. The chemical changes in the FEP surface layer were investigated by Fourier-transform infrared spectroscopy with attenuated total reflection attachment and X-ray photoelectron spectroscopy. Double bonds were found to be the main product in the case of VUV treatment at 0.05 Torr, while photo-oxidation of FEP occurred predominantly by VUV treatment at 2.5 Torr under formation of the —CF2C(O)F group. This oxygen-containing group was more effectively formed in the FEP surface layer by VUV photo-oxidation than by conventional surface oxidation techniques such as treatments by plasma and corona discharge and ozone. Storage of the VUV-treated polymers in air at 50% relative humidity resulted in hydrolysis of —CF2C(O)F to the —CF2COOH group. Substantial improvement of the film wettability was noticed after VUV photo-oxidation. These findings suggest that VUV irradiation provides a high potential for surface modification of fluorinated polymers which are known to be particularly resistant against functionalization by conventional surface modification techniques such as plasma treatment. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2215–2222, 1998  相似文献   

15.
Gas‐phase photolysis of trimethoxysilane, achieved for the first time by focused ArF laser radiation at 193 nm, yields C1,2 hydrocarbons, methanol and carbon monoxide along with ultrafine nanostructured silicone powder possessing ? SiO3 and SiO4 configurations and Si? H and Si? OCH3 bonds. The photolytic process, resulting in efficient removal of the methyl groups, is explained as a multitude of steps involving cleavages of all the available bonds. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
The effect of active H2S, HS·, and atomic hydrogen impurities on the condensation of highly supersaturated carbon vapor obtained in the combined laser photolysis of a mixture of C3O2 and H2S diluted with argon was studied. The concentrations of carbon vapor, HS·, and atomic hydrogen obtained in the laser photolysis of the mixture were determined using the absorption cross sections of C3O2 and H2S molecules measured in this work and the measured amount of absorbed laser radiation. The time profiles of the sizes of growing nanoparticles synthesized in C3O2 + Ar and C3O2 + H2S + Ar mixtures were measured using the laser-induced incandescence (LII) method. An improved LII model was developed, which simultaneously took into account the heating and cooling of nanoparticles and the temperature dependence of the thermophysical properties of nanoparticles, as well as the cooling of nanoparticles by evaporation and thermal emission. The size distributions of carbon nanoparticles formed in the presence and absence of active impurities were determined with the use of a transmission electron microscope. The final average size of carbon nanoparticles was found to decrease from 12 to 9 nm upon the addition of H2S to the system, whereas the rate of nanoparticle growth decreased by a factor of 3, and the properties of nanoparticles changed. In particular, the translational energy accommodation coefficient for Ar molecules at the surface of carbon nanoparticles was found to decrease from 0.44 to 0.30. A comparison of the calculated total carbon balance at the early stage of nanoparticle formation with experimental data demonstrated that the reaction C + H2S → HCS· + H, which removes a portion of carbon vapor from the condensation process, has a determining effect on the carbon balance in the system. It was found that HS· and atomic hydrogen affect the carbon balance in the system only slightly. Thus, the experimentally observed decrease in the rate of nanoparticle growth and in the sizes of nanoparticles can be explained by a decrease in the concentration of free carbon upon the addition of H2S molecules to the system.  相似文献   

17.
The oxidative degradation of 3-amino 5-methyl isoxazole initiated by the VUV photolysis of water at 172 nm has been studied. Mineralization of CO2, H2O, NO 3 and NH 4 + is more efficient when reductive conditions (argon saturated solutions) are favoured. Formation of compounds which cannot be completely oxidised to CO2 is observed. Experiments performed under strictly oxidative conditions show higher yields of these inert compounds and, hence, incomplete mineralization. Cyanide was formed in concentrations lower than 5×10–5 mol/l. In alkaline aqueous solutions, cyanide is completely transformed into CO 3 2– , NH 4 + and NO 3 during the irradiation time needed to mineralize the isoxazole. Therefore, cyanide does not present a potential risk for the use of the VUV photolysis for isoxazole degradation. Similarly, organic nitrogen is converted into both, NO 3 and NH 4 + . The relative concentrations of the two ions depend on total irradiation time, oxygen saturation and reactor geometry. A sequence of reactions is proposed and discussed.Dedicated to Professor Dr. Dieter Klockow on the occasion of his 60th birthday  相似文献   

18.
Sustainable, low‐temperature methods for natural gas activation are critical in addressing current and foreseeable energy and hydrocarbon feedstock needs. Large portions of natural gas resources are still too expensive to process due to their high content of hydrogen sulfide gas (H2S) mixed with methane, deemed altogether as sub‐quality or “sour” gas. We propose a unique method of activation to form a mixture of sulfur‐containing hydrocarbon intermediates, CH3SH and CH3SCH3, and an energy carrier such as H2. For this purpose, we investigated the H2S‐mediated methane activation to form a reactive CH3SH species by means of direct photolysis of sub‐quality natural gas. Photoexcitation of hydrogen sulfide in the CH4+H2S complex resulted in a barrierless relaxation by a conical intersection to form a ground‐state CH3SH+H2 complex. The resulting CH3SH could further be coupled over acidic catalysts to form higher hydrocarbons, and the resulting H2 used as a fuel. This process is very different from conventional thermal or radical‐based processes and can be driven photolytically at low temperatures, with enhanced control over the conditions currently used in industrial oxidative natural gas activation. Finally, the proposed process is CO2 neutral, as opposed to the current industrial steam methane reforming (SMR).  相似文献   

19.
UV filters as emerging contaminants are of great concern and their wide detection in aquatic environments indicates their chemical stability and persistence. This review summarized the photolytic and photocatalytic degradation of UV filters in contaminated water. The findings indicated that limited research has been conducted on the photolysis and photocatalysis of UV filters. Photolysis of UV filters through UV irradiation in natural water was a slow process, which was accelerated by the presence of photosensitisers e.g. triplet state of chromaphoric dissolved organic matter (3CDOM*) and nutrients but reduced by salinity, dissolved organic matter (DOM) and divalent cations. UV Photocatalysis of 4-methylbenzylidene camphor and 2-phenylbenzimidazole-5-sulfonic acid was very effective with 100% removal within 30 min and 90 min using medicated TiO2/H2O2 and TiO2, respectively. The radiation source, type of catalyst and oxygen content were key factors. Future research should focus on improved understanding of photodegradation pathways and by-products of UV filters.  相似文献   

20.
Multiphoton laser-induced decomposition is reported here for photolysis ketene with 9.260 μm radiation from a pulsed CO2 TEA laser. Chemical end products of this photolysis were primarily H2 and CO. Visible chemiluminescence, attributed to C2 Swan band emission, was observed during the first ≈ 1 μs following photolysis. A collision-assisted dissociation, followed by rephotolysis of the transient products, is proposed to account for the results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号