首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel diblock copolymer consisting of poly(vinylferrocene) (PVFc) and poly(N,N‐diethylacrylamide) (PDEA) is synthesized via a combination of anionic and RAFT polymerization. The use of a novel route to hydroxyl‐end‐functionalized metallopolymers in anionic polymerization and subsequent esterification with a RAFT agent leads to a PVFc macro‐CTA ( = 3800 g mol−1; Đ = 1.17). RAFT polymerization with DEA affords block copolymers as evidenced by 1H NMR spectroscopy as well as size exclusion chromatography (6400 ≤ ≤ 33700 g mol−1; 1.31 ≤ Đ 1.28). Self‐assembly of the amphiphilic block copolymers in aqueous solution leads to micelles as shown via TEM. Importantly, the distinct thermo‐responsive and redox‐responsive character of the blocks is probed via dynamic light scattering and found to be individually and repeatedly addressable.

  相似文献   


2.
A direct and facile route toward semitelechelic polymers, end‐functionalized with palladated sulfur–carbon–sulfur pincer (PdII‐pincer) complexes is reported that avoids any post‐polymerization step. Key to our methodology is the combination of reversible addition‐fragmentation chain‐transfer (RAFT) polymerization with functionalized chain‐transfer agents. This strategy yields Pd end‐group‐functionalized materials with monomodal molar mass dispersities (Đ ) of 1.18–1.44. The RAFT polymerization is investigated using a PdII‐pincer chain‐transfer agent for three classes of monomers: styrene, tert‐butyl acrylate, and N‐isopropylacrylamide. The ensuing PdII‐pincer end‐functionalized polymers are analyzed using 1H NMR spectroscopy, gel‐permeation chromatography, and elemental analysis. The RAFT polymerization methodology provides a direct pathway for the fabrication of PdII‐pincer functionalized polymers with complete end‐group functionalization.

  相似文献   


3.
The modulation of the cloud point of aqueous poly(N,N‐diethylacrylamide) solutions via the formation of supramolecular cyclodextrin complexes with hydrophobic end groups, namely adamantyl, tert‐butyl phenyl and azobenzene, synthesized via RAFT polymerization is described. The dependence of the apparent cloud points after cyclodextrin complexation is investigated with respect to the type and quantity of the guest end group, the polymer chain length and the cyclodextrin/end group ratio. Furthermore, the effect is reversed via the addition of guest molecules or via biocompatible enzymatic degradation of the cyclodextrins entire.

  相似文献   


4.
The synthesis of hybrid bioconjugates via the ring‐opening polymerization (ROP) of N‐carboxyanhydrides (NCAs) using a synthetic macroinitiator is described. Poly(n‐butyl acrylate), polystyrene, and poly(N‐isopropyl acrylamide) are synthesized (polydisperity index, Đ < 1.1) using reversible addition–fragmentation chain transfer (RAFT) as the synthetic tool. A phthalimidomethyl trithiocarbonate RAFT chain transfer agent is used to prepare well‐defined, end‐functional polymers, which after deprotection result in amine terminal macroinitiators. The subsequent initiating systems could successfully be chain extended with ε‐benzyloxycarbonyl‐l ‐lysine or γ‐benzyl‐l ‐glutamate as the NCAs to produce a library of polymer–polypeptide conjugates. In doing so, a novel procedure for directly synthesizing bioconjugates via a non‐modular route without the need for excessive purification and isolation steps is described.

  相似文献   


5.
The controlled folding of a single polymer chain is for the first time realized by metal‐ complexation. α,ω‐Bromine functional linear polymers are prepared via activators regenerated by electron transfer (ARGET) ATRP (,SEC = 5900 g mol−1, Đ = 1.07 and 12 000 g mol−1, Đ = 1.06) and the end groups of the polymers are subsequently converted to azide functionalities. A copper‐catalyzed azide–alkyne cycloaddition (CuAAC) reaction is carried out in the presence of a novel triphenylphosphine ligand and the polymers to afford homotelechelic bis‐triphenylphosphine polymeric‐macroligands (MLs) (,SEC = 6600 g mol−1, Đ = 1.07, and 12 800 g mol−1, Đ = 1.06). Single‐chain metal complexes (SCMCs) are formed in the presence of Pd(II) ions in highly diluted solution at ambient temperature. The results derived via 1H and 31P{1H} NMR experiments, SEC, and DLS unambiguously evidence the efficient formation of SCMCs via metal ligand complexation.

  相似文献   


6.
The polymerisation of N‐acryloylmorpholine in water is reported utilising Cu(0)‐mediated living radical polymerisation (SET‐LRP). The inherent instability of [CuI(Me6‐Tren)Br] in aqueous solution is exploited via rapid disproportionation to prepare Cu(0) particles and [CuII(Me6‐Tren)Br2] in situ prior to addition of monomer and initiator. Quantitative conversion is attained within 30 min for various degrees of polymerisation (DPn = 20–640) with SEC showing symmetrical narrow molecular weight distributions (Đ < 1.18) in all cases. Optimised conditions are subsequently applied for the preparation of a diblock copolymer poly(NIPAm)‐b‐(N‐acryloylmorpholine), illustrating the versatility of this approach.

  相似文献   


7.
Though great attention has been paid in constructing well‐defined nano‐structures via the self‐assembly of amphiphilic macromolecules, the self‐assembly of non‐amphiphilic macromolecules in nanodroplet has drawn less attention up to now. Recently, we prepared a temperature‐responsive PEG‐based branched polymer with disulfide bonds in its backbone via reversible addition–fragmentation chain transfer (RAFT) polymerization of 2‐(2‐methoxyethoxy) ethyl methacrylate, oligo(ethylene glycol) methacrylate, and N,N′‐cystamine bisacrylamide. Subsequently, we loaded the branched polymer into nanodroplets, and have found that the self‐assembly behaviors of this branched poly­mer in the nanodroplet are different from those in common solution. Bioreducible nanocapsules with tunable size can easily formed in nanodroplet even at high concentration.

  相似文献   


8.
Free radical terpolymerization of (N,N)‐dimethylacrylamide, ethylene‐glycol‐dimethacrylate and N‐(p‐ or m‐ethyl‐phenyl)acrylamide leads to para‐ and meta‐ethyl‐phenyl‐modified hydrophilic polymer networks. Polymeric networks of different molar ratios are prepared in special molds to give water swellable disc‐ shaped samples. The swelling behavior in water and aqueous cyclodextrin (CD) solution of the obtained samples is described while a distinctive differentiation between the para‐ and meta‐ethyl‐phenyl containing networks in CD solution can be found.

  相似文献   


9.
A commercially available palladium N‐heterocyclic carbene (Pd‐NHC) precatalyst is used to initiate chain‐growth polymerization of 2‐bromo‐3‐hexyl‐5‐trimethylstannylthiophene. The molecular weight of the resultant poly(3‐hexylthiophene) can be modulated (7 to 73 kDa, Đ = 1.14 to 1.53) by varying the catalyst concentration. Mass spectrometry data confirm control over the polymer end groups and 1H NMR spectroscopy reveals that the palladium catalyst is capable of “ring‐walking”. A linear relationship between Mn and monomer conversion is observed. Atomic force microscopy and X‐ray scattering verify the regioregular nature of the resultant polythiophene.

  相似文献   


10.
This paper reports on the synthesis of well‐defined polyacrylamide‐based nanogels via reversible addition–fragmentation chain transfer (RAFT) dispersion polymerization, highlighting a templateless route for the efficient synthesis of nanogels based on water‐soluble polymers. RAFT dispersion polymerization of acrylamide in co‐nonsolvents of water–tert‐butanol mixtures by chain extension from poly(dimethylacrylamide) shows well‐controlled polymerization process, uniform nanogel size, and excellent colloidal stability. The versatility of this approach is further demonstrated by introducing a hydrophobic co‐monomer (butyl acrylate) without disturbing the dispersion polymerization process.

  相似文献   


11.
A versatile one‐pot strategy for the preparation of reversibly cross‐linked polymer‐coated mesoporous silica nanoparticles (MSNs) via surface reversible addition–fragmentation chain transfer (RAFT) polymerization is presented for the first time in this paper. The less reactive monomer oligo(ethylene glycol) acrylate (OEGA) and the more reactive cross‐linker N,N′‐cystaminebismethacrylamide (CBMA) are chosen to be copolymerized on the external surfaces of RAFT agent‐functionalized MSNs to form the cross‐linked polymer shells. Owing to the reversible cleavage and restoration of disulfide bonds via reduction/oxidation reactions, the polymer shells can control the on/off switching of the nanopores and regulate the drug loading and release. The redox‐responsive release of doxorubicin (DOX) from this drug carrier is realized. The protein adsorption, in vitro cytotoxicity assays, and endocytosis studies demonstrate that this biocompatible vehicle is a potential candidate for delivering drugs. It is expected that this versatile grafting strategy may help fabricate satisfying MSN‐based drug delivery systems for clinical application.

  相似文献   


12.
The preparation of physically crosslinked hydrogels from quasi ABA‐triblock copolymers with a water‐soluble middle block and hydrophobic end groups is reported. The hydrophilic monomer N‐acryloylmorpholine is copolymerized with hydrophobic isobornyl acrylate via a one‐pot sequential monomer addition through reversible addition fragmentation chain‐transfer (RAFT) polymerization in an automated parallel synthesizer, allowing systematic variation of polymer chain length and hydrophobic–hydrophilic ratio. Hydrophobic interactions between the outer blocks cause them to phase‐separate into larger hydrophobic domains in water, forming physical crosslinks between the polymers. The resulting hydrogels are studied using rheology and their self‐healing ability after large strain damage is shown.

  相似文献   


13.
Vinyl acetate is polymerized in the living way under the irradiation of blue light‐emitting diodes (LEDs) or sunlight without photocatalyst at ambient temperature. 2‐(Ethoxycarbonothioyl)sulfanyl propanoate is exclusively added and acts as initiator and chain transfer agent simultaneously in the current system. Poly(vinyl acetate) with well‐regulated molecular weight and narrow molecular weight distribution (Đ < 1.30) is synthesized. Near quantitative end group fidelity of polymer is demonstrated by nuclear magnetic resonance (NMR) and matrix‐assisteed laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS).

  相似文献   


14.
A thermo‐, photo‐ and chemoresponsive shape‐memory material is successfully prepared by introducing α‐cyclodextrin (αCD) and azobenzene (Azo) into a poly(acrylate acid)/alginate (PAA/Alg) network. The tri‐stimuli‐responsive formation/dissociation of αCD‐Azo acts as molecular switches freezing or increasing the molecular mobility. The resulting film herein can be processed into temporary shapes as needed and recovers its initial shape upon the application of light irradiation, heating, or chemical agent independently. Furthermore, the agar diffusion test suggests that the α‐CD‐Alg/Azo‐PAA has good biocompatibility for L929 fibroblast‐like cells.

  相似文献   


15.
Benzaldehyde‐functional cellulose paper sheets have been synthesized via tosylation of cellulose (Whatman No 5) followed by addition of p‐hydroxy benzaldehyde. Via UV‐induced Paterno–Büchi [2+2] cycloaddition reactions, these aldehyde functional surfaces are grafted with triallylcyanurate, trimethylolpropane allyl ether, and vinyl chloroacetate. In the following, allyl‐functional polymers (poly(butyl acrylate), pBA, Mn = 6990 g mol−1, Đ = 1.12 and poly(N‐isopropyl acrylamide), pNIPAAm, Mn = 9500 g mol−1, Đ = 1.16) synthesized via reversible addition fragmentation chain transfer polymerization are conjugated to the celloluse surface in a UV‐induced grafting‐to approach. With pBA, hydrophobic cellulose sheets are obtained (water contact angle 116°), while grafting of pNIPAAm allows for generation of “smart” surfaces, which are hydrophilic at room temperature, but that become hydrophobic when heated above the characteristic lower critical solution temperature (93° contact angle). The Paterno–Büchi reaction has been shown to be a versatile synthetic tool that also performs well in grafting‐to approaches whereby its overall performance seems to be close to that of radical thiol‐ene reactions.

  相似文献   


16.
The first polymer bearing exTTF units intended for the use in electrical charge storage is presented. The polymer undergoes a redox reaction involving two electrons at −0.20 V vs Fc/Fc+ and is applied as active cathode material in a Li‐organic battery. The received coin cells feature a theoretical capacity of 132 mAh g−1, a cell potential of 3.5 V, and a lifetime exceeding more than 250 cycles.

  相似文献   


17.
A unique fabrication process of low molar mass, crystalline polypeptoid fibers is described. Thermoresponsive fiber mats are prepared by electrospinning a homogeneous blend of semicrystalline poly(N‐(n‐propyl) glycine) (PPGly; 4.1 kDa) with high molar mass poly(ethylene oxide) (PEO). Annealing of these fibers at ≈100 °C selectively removes the PEO and produces stable crystalline fiber mats of pure PPGly, which are insoluble in aqueous solution but can be redissolved in methanol or ethanol. The formation of water‐stable polypeptoid fiber mats is an important step toward their utilization in biomedical applications such as tissue engineering or wound dressing.

  相似文献   


18.
Redox‐cleavable mikto‐arm star polymers are prepared by an “arm‐first” approach involving copolymerization of a dimethacrylate mediated by a mixture of macroRAFT agents. Thus, RAFT copolymerization of the monomers BMA, DMAEMA, and OEGMA, with the disulfide dimethacrylate cross‐linker (DSDMA), bis(2‐methacryloyl)oxyethyl disulfide, mediated by a 1:1:1 mixture of three macroRAFT agents with markedly different properties [hydrophilic, poly[oligo(ethylene glycol) methacrylate]—P(OEGMA)8–9; cationizable, poly[2‐(dimethylamino)ethyl methacrylate]—P(DMAEMA); hydrophobic, poly(n‐butyl methacrylate)—P(BMA)] provides low dispersity mikto‐arm star polymers. Good control (Đ < 1.3) is observed for the target P(DMAEMA)/P(OEGMA)/P(BMA) (3:3:1) mikto‐arm star, a double hydrophilic P(DMAEMA)/P(OEGMA) (3:3) mikto‐arm star and a hydrophobic P(BMA) homo‐arm star. However, Đ for the target mikto‐arm stars increases with an increase in either the ratio [DSDMA]:[total macroRAFT] or the fraction of hydrophobic P(BMA) macroRAFT agent. The quaternized mikto‐arm star in dilute aqueous solution shows a monomodal particle size distribution and an average size of ≈145 nm.

  相似文献   


19.
Photoinitiated reversible addition‐fragmentation chain transfer (RAFT) dispersion polymerization of 2‐hydroxypropyl methacrylate is conducted in water at low temperature using thermoresponsive copolymers of 2‐(2‐methoxyethoxy) ethyl methacrylate and oligo(ethylene glycol) methacrylate (Mn = 475 g mol−1) as the macro‐RAFT agent. Kinetic studies confirm that quantitative monomer conversion is achieved within 15 min of visible‐light irradiation (405 nm, 0.5 mW cm−2), and good control is maintained during the polymerization. The polymerization can be temporally controlled by a simple “ON/OFF” switch of the light source. Finally, thermoresponsive diblock copolymer nano‐objects with a diverse set of complex morphologies (spheres, worms, and vesicles) are prepared using this particular formulation.

  相似文献   


20.
The chemical control of cell division has attracted much attention in the areas of single cell‐based biology and high‐throughput screening platforms. A mussel‐inspired cytocompatible encapsulation method for achieving a “cell‐division control” with cross‐linked layer‐by‐layer (LbL) shells is developed. Catechol‐grafted polyethyleneimine and hyaluronic acid are chosen as polyelectrolytes for the LbL process, and the cross‐linking of polyelectrolytes is performed at pH 8.5. Cell division is controlled by the number of the LbL nanolayers and cross‐linking reaction. We also suggest a new measuring unit, , for quantifying “cell‐division timing” based on microbial growth kinetics.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号