首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
We consider numerical methods for solving inverse problems that arise in heart electrophysiology. The first inverse problem is the Cauchy problem for the Laplace equation. Its solution algorithm is based on the Tikhonov regularization method and the method of boundary integral equations. The second inverse problem is the problem of finding the discontinuity surface of the coefficient of conductivity of a medium on the basis of the potential and its normal derivative given on the exterior surface. For its numerical solution, we suggest a method based on the method of boundary integral equations and the assumption on a special representation of the unknown surface.  相似文献   

2.
We propose two algorithms involving the relaxation of either the given Dirichlet data or the prescribed Neumann data on the over‐specified boundary in the case of the alternating iterative algorithm of Kozlov et al. (USSR Comput Math Math Phys 31 (1991), 45–52) applied to the Cauchy problem for the two‐dimensional modified Helmholtz equation. The two mixed, well‐posed and direct problems corresponding to every iteration of the numerical procedure are solved using the method of fundamental solutions (MFS), in conjunction with the Tikhonov regularization method. For each direct problem considered, the optimal value of the regularization parameter is selected according to the generalized cross‐validation criterion. The iterative MFS algorithms with relaxation are tested for Cauchy problems associated with the modified Helmholtz equation in two‐dimensional geometries to confirm the numerical convergence, stability, accuracy and computational efficiency of the method. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

3.
In this paper, the Cauchy problem for the Helmholtz equation is investigated. By Green’s formulation, the problem can be transformed into a moment problem. Then we propose a modified Tikhonov regularization algorithm for obtaining an approximate solution to the Neumann data on the unspecified boundary. Error estimation and convergence analysis have been given. Finally, we present numerical results for several examples and show the effectiveness of the proposed method.  相似文献   

4.
This study is devoted to recovering two initial values for a time‐fractional diffusion‐wave equation from boundary Cauchy data. We provide the uniqueness result for recovering two initial values simultaneously by the method of Laplace transformation and analytic continuation. And then we use a nonstationary iterative Tikhonov regularization method to solve the inverse problem and propose a finite dimensional approximation algorithm to find good approximations to the initial values. Numerical examples in one‐ and two‐dimensional cases are provided to show the effectiveness of the proposed method.  相似文献   

5.
The aim of this work is to identify numerically, for the first time, the time-dependent potential coefficient in a fourth-order pseudo-parabolic equation with nonlocal initial data, nonlocal boundary conditions, and the boundary data as overdetermination condition. This problem emerges significantly in the modeling of various phenomena in physics and engineering. From literature we already know that this inverse problem has a unique solution. However, the problem is still ill-posed by being unstable to noise in the input data. For the numerical realization, we apply the quintic B-spline (QB-spline) collocation method for discretizing the pseudo-parabolic problem and the Tikhonov regularization for finding a stable and accurate solution. The resulting nonlinear minimization problem is solved using the MATLAB subroutine lsqnonlin. Moreover, the von Neumann stability analysis is also discussed.  相似文献   

6.
The inverse Cauchy problem of Laplace equation is hard to solve numerically, since it is highly ill-posed in the Hadamard sense. With this in mind, we propose a natural regularization technique to overcome the difficulty. In the linear space of the Trefftz bases for solving the Laplace equation, we introduce a novel concept to construct the Trefftz energy bases used in the numerical solution for the inverse Cauchy problem of the Laplace equation in arbitrary star plane domain. The Trefftz energy bases not only satisfy the Laplace equation but also preserve the energy, whose performance is better than the original Trefftz bases. We test the new method by two numerical examples.  相似文献   

7.
Takashi Ohe  Katsu Yamatani  Kohzaburo Ohnaka 《PAMM》2007,7(1):2040035-2040036
We discuss a numerical method to solve a Cauchy problem for the Laplace equation in the two-dimensional annular domain. We consider the case that the Cauchy data is given on an arc. We develop an approximation method based of the fundamental solutions method using the least squares method with Tikhonov regularization. The effectiveness of our method is examined by a numerical experiment. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
ABSTRACT

Considered in this paper is an inverse Robin problem governed by a steady-state diffusion equation. By the Robin inverse problem, one wants to recover the unknown Robin coefficient on an inaccessible boundary from Cauchy data measured on the accessible boundary. In this paper, instead of reconstructing the Robin coefficient directly, we compute first the Cauchy data on the inaccessible boundary which is a linear inverse problem, and then compute the Robin coefficient through Newton's law. For the Cauchy problem, a parameter-dependent coupled complex boundary method (CCBM) is applied. The CCBM has its own merits, and this is particularly true when it is applied to the Cauchy problem. With the introduction of a positive parameter, we can prove the regularized solution is uniformly bounded with respect to the regularization parameter which is a very good property because the solution can now be reconstructed for a rather small value of the regularization parameter. For the problem of computing the Robin coefficient from the recovered Cauchy data, a least square output Tikhonov regularization method is applied to Newton's law to obtain a stable approximate Robin coefficient. Numerical results are given to show the feasibility and effectiveness of the proposed method.  相似文献   

9.
In this paper, we consider the Cauchy problem of Laplace’s equation in the neighborhood of a circle. The method of fundamental solutions (MFS) combined with the discrete Tikhonov regularization is applied to obtain a regularized solution from noisy Cauchy data. Under the suitable choices of a regularization parameter and an a priori assumption to the Cauchy data, we obtain a convergence result for the regularized solution. Numerical experiments are presented to show the effectiveness of the proposed method.  相似文献   

10.
A numerical method is proposed for solving an inverse electrocardiography problem for a medium with a piecewise constant electrical conductivity. The method is based on the method of boundary integral equations and Tikhonov regularization.  相似文献   

11.
构造了一种正则化的积分方程方法来由Cauchy数据确定一维热传导方程的移动边界.在将区域延拓至规则区域后,通过Fourier方法将问题转化为一个第一类Volterra积分方程.然后分别用Lavrentiev正则化方法以及Tikhonov正则化方法将不稳定的第一类Volterra积分方程转化为适定的第二类积分方程,并分别将积分方程转化为常微分方程组,并用Runge—Kutta方法数值求解,以及直接离散来求解.最后通过自由边界上的条件得到数值的移动边界.通过一些数值试验表明此方法是有效可行的,并且给出的方法无需迭代,数值计算较简单.  相似文献   

12.
This study is intended to provide a numerical algorithm for solving a one-dimensional inverse heat conduction problem. The given heat conduction equation, the boundary conditions, and the initial condition are presented in a dimensionless form. The numerical approach is developed based on the use of the solution to the auxiliary problem as a basis function. To regularize the resultant ill-conditioned linear system of equations, we apply the Tikhonov regularization method to obtain the stable numerical approximation to the solution.  相似文献   

13.
In this paper, we study an inverse problem of identifying a time-dependent term of an unknown source for a time fractional diffusion equation using nonlocal measurement data. Firstly, we establish the conditional stability for this inverse problem. Then two regularization methods are proposed to for reconstructing the time-dependent source term from noisy measurements. The first method is an integral equation method which formulates the inverse source problem into an integral equation of the second kind; and a prior convergence rate of regularized solutions is derived with a suitable choice strategy of regularization parameters. The second method is a standard Tikhonov regularization method and formulates the inverse source problem as a minimizing problem of the Tikhonov functional. Based on the superposition principle and the technique of finite-element interpolation, a numerical scheme is proposed to implement the second regularization method. One- and two-dimensional examples are carried out to verify efficiency and stability of the second regularization method.  相似文献   

14.
We consider a linear integral equation with a hypersingular integral treated in the sense of the Hadamard finite value. This equation arises in the solution of the Neumann boundary value problem for the Laplace equation with a representation of a solution in the form of a double-layer potential. We consider the case in which the interior or exterior boundary value problem is solved in a domain; whose boundary is a smooth closed surface, and an integral equation is written out on that surface. For the integral operator in that equation, we suggest quadrature formulas like the method of vortical frames with a regularization, which provides its approximation on the entire surface for the use of a nonstructured partition. We construct a numerical scheme for the integral equation on the basis of suggested quadrature formulas, prove an estimate for the norm of the inverse matrix of the related system of linear equations and the uniform convergence of numerical solutions to the exact solution of the hypersingular integral equation on the grid.  相似文献   

15.
易苗  刘扬 《数学杂志》2017,37(5):1040-1046
本文研究了奇异积分方程在反边值问题中的应用问题.利用圆周上的自然积分方程及其反演公式,把Laplace方程的边值反问题转化为一对超奇异积分方程和弱奇异积分方程的组合,通过选取三角插值近似奇异积分的计算并构造相应的配置格式,并使用Tikhonov正则化方法求解所得到的线性方程组.数值实验表明了该方法的有效性.  相似文献   

16.
This paper is devoted to calibrate smooth local volatility surface under jump-diffusion processes. This calibration problem is posed as an inverse problem: given a finite set of observed European option prices, find a local volatility function such that the theoretical option prices matches the observed ones optimally with respect to a prescribed performance criterion. Firstly, we obtain an Euler-Lagrange equation for the calibration problem using Tikhonov regularization method. Then we solve the Euler–Lagrange equation using an iterative algorithm and obtain the volatility. Finally, numerical experiments show the effectiveness of the proposed method.  相似文献   

17.
孙瑶  陈博 《计算数学》2018,40(3):254-270
 本文处理二维和三维Helmholtz方程的边界数据复原问题.通过利用位势理论近似问题的解,导出了解决Cauchy问题的一种非迭代积分方程方法.为了处理形成问题的不适定性,采用了Tikhonov正则化结合Morozov偏差原理的方法,并且给出了算法的收敛性和误差估计,最后给出了二维和三维的数值算例.通过数值算例我们检验了源点和边界之间距离的关系,算法关于噪声、源点数目的数值收敛性,稳定性.  相似文献   

18.
In this paper,we consider the Cauchy problem for the Laplace equation,which is severely ill-posed in the sense that the solution does not depend continuously on the data.A modified Tikhonov regularization method is proposed to solve this problem.An error estimate for the a priori parameter choice between the exact solution and its regularized approximation is obtained.Moreover,an a posteriori parameter choice rule is proposed and a stable error estimate is also obtained.Numerical examples illustrate the validity and effectiveness of this method.  相似文献   

19.
In this paper, we propose an improved non-local boundary value problem method to solve a Cauchy problem for the Laplace equation. It is known that the Cauchy problem for the Laplace equation is severely ill-posed, i.e., the solution does not depend continuously on the given Cauchy data. Convergence estimates for the regularized solutions are obtained under a-priori bound assumptions for the exact solution. Some numerical results are given to show the effectiveness of the proposed method.  相似文献   

20.
Based on the Tikhonov regularization method, we explicitly construct a Carleman function in an ill-posed mixed problem for the Laplace equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号