首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
In this paper supercritical equilibria and critical speeds of axially moving beams constrained by sleeves with torsion springs are deduced. Transverse vibration of the beams is governed by a nonlinear integro-partial-differential equation. In the supercritical regime, the corresponding static equilibrium equation for the hybrid boundary conditions is analytically solved for the equilibria and the critical speeds. In the view of the non-trivial equilibrium, comparisons are made among the integro-partial-differential equation, a nonlinear partial-differential equation for transverse vibration, and coupled equations for planar motion under the hybrid boundary conditions.  相似文献   

2.
Natural frequencies of nonlinear coupled planar vibration are investigated for axially moving beams in the supercritical transport speed ranges. The straight equilibrium configuration bifurcates in multiple equilibrium positions in the supercritical regime. The finite difference scheme is developed to calculate the non-trivial static equilibrium. The equations are cast in the standard form of continuous gyroscopic systems via introducing a coordinate transform for non-trivial equilibrium configuration. Under fixed boundary conditions, time series are calculated via the finite difference method. Based on the time series, the natural frequencies of nonlinear planar vibration, which are determined via discrete Fourier transform (DFT), are compared with the results of the Galerkin method for the corresponding governing equations without nonlinear parts. The effects of material parameters and vibration amplitude on the natural frequencies are investigated through parametric studies. The model of coupled planar vibration can reduce to two nonlinear models of transverse vibration. For the transverse integro-partial-differential equation, the equilibrium solutions are performed analytically under the fixed boundary conditions. Numerical examples indicate that the integro-partial-differential equation yields natural frequencies closer to those of the coupled planar equation.  相似文献   

3.
In supercritical regime, the coupled model equations for the axially moving beam with simple support boundary conditions are considered. The critical speed is determined by linear bifurcation analysis, which is in agreement with the results in the literature. For the corresponding static equilibrium state, the second-order asymptotic nontrivial solutions are obtained through the multiple scales method. Meantime, the numerical solutions are also obtained based on the finite difference method. Comparisons among the analytical solutions, numerical solutions and solutions of integro-partial-differential equation of transverse which is deduced from coupled model equations are made. We find that the second-order asymptotic analytical solutions can well capture the nontrivial equilibrium state regardless of the amplitude of transverse displacement. However, the integro-partial-differential equation is only valid for the weak small-amplitude vibration axially moving slender beams.  相似文献   

4.
Complex modes and traveling waves in axially moving Timoshenko beams are studied. Due to the axially moving velocity, complex modes emerge instead of real value modes. Correspondingly, traveling waves are present for the axially moving material while standing waves dominate in the traditional static structures. The analytical results obtained in this study are verified with a numerical differential quadrature method.  相似文献   

5.
Equilibria of axially moving beams are computationally investigated in the supercritical transport speed ranges. In the supercritical regime, the pattern of equilibria consists of the straight configuration and of non-trivial solutions that bifurcate with transport speed. The governing equations of coupled planar is reduced to a partial-differential equation and an integro-partial-differential equation of transverse vibration. The numerical schemes are respectively presented for the governing equations and the corresponding static equilibrium equation of coupled planar and the two governing equations of transverse motion for non-trivial equilibrium solutions via the finite difference method and differential quadrature method under the simple support boundary. A steel beam is treated as example to demonstrate the non-trivial equilibrium solutions of three nonlinear equations. Numerical results indicate that the three models predict qualitatively the same tendencies of the equilibrium with the changing parameters and the integro-partial-differential equation yields results quantitatively closer to those of the coupled equations.  相似文献   

6.
数值方法研究超临界速度下轴向运动梁横向非线性振动前两阶固有频率.通过对非平凡平衡位形做坐标变换,建立超临界轴向运动梁的标准控制方程,一个积分-偏微分非线性方程.利用有限差分法数值离散梁两端简支边界下控制方程,计算轴向运动梁中点的横向振动位移,并将计算结果作为时间序列,运用离散傅立叶变换得到超临界轴向运动梁横向振动的频率...  相似文献   

7.
Axially moving beams are often discussed with several classic boundary conditions, such as simply-supported ends, fixed ends, and free ends. Here, axially moving beams with generalized boundary conditions are discussed for the first time. The beam is supported by torsional springs and vertical springs at both ends. By modifying the stiffness of the springs, generalized boundaries can replace those classical boundaries.Dynamic stiffness matrices are, respectively, established for axially moving Timoshenko beams and Euler-Bernoulli(EB) beams with generalized boundaries. In order to verify the applicability of the EB model, the natural frequencies of the axially moving Timoshenko beam and EB beam are compared. Furthermore, the effects of constrained spring stiffness on the vibration frequencies of the axially moving beam are studied. Interestingly, it can be found that the critical speed of the axially moving beam does not change with the vertical spring stiffness. In addition, both the moving speed and elastic boundaries make the Timoshenko beam theory more needed. The validity of the dynamic stiffness method is demonstrated by using numerical simulation.  相似文献   

8.
The generalized integral transform technique (GITT) is used to find a semianalytical numerical solution for dynamic response of an axially moving Timoshenko beam with clamped-clamped and simply-supported boundary conditions, respectively. The implementation of GITT approach for analyzing the forced vibration equation eliminates the space variable and leads to systems of second-order ordinary differential equations (ODEs) in time. The MATHEMATICA built-in function, NDSolve, is used to numerically solve the resulting transformed ODE system. The good convergence behavior of the suggested eigenfunction expansions is demonstrated for calculating the transverse deflection and the angle of rotation of the beam cross-section. Moreover, parametric studies are performed to analyze the effects of the axially moving speed, the axial tension, and the amplitude of external distributed force on the vibration amplitude of axially moving Timoshenko beams.  相似文献   

9.
Vibration and stability are investigated for an axially moving beam constrained by simple supports with torsion springs. A scheme is proposed to derive natural frequencies and modal functions from given boundary conditions of an elastic beam moving at a constant speed. For a beam constituted by the Kelvin model, effects of viscoelasticity on the free vibration are analyzed via the method of multiple scales and demonstrated via numerical simulations. When the axial speed is characterized as a simple harmonic variation about the constant mean speed, the instability conditions are presented for axially accelerating viscoelastic beams in parametric resonance. Numerical examples show the effects of the constraint stiffness, the mean axial speed, and the viscoelasticity.  相似文献   

10.
11.
The axially moving beams on simple supports with torsion springs are studied. The general modal functions of the axially moving beam with constant speed have been obtained from the supporting conditions. The contribution of the spring stiffness to the natural frequencies has been numerically investigated. Transverse stability is also studied for axially moving beams on simple supports with torsion springs. The method of multiple scales is applied to the partialdifferential equation governing the transverse parametric vibration. The stability boundary is derived from the solvability condition. Instability occurs if the axial speed fluctuation frequency is close to the sum of any two natural frequencies or is two fold natural frequency of the unperturbed system. It can be concluded that the spring stiffness makes both the natural frequencies and the instability regions smaller in the axial speed fluctuation frequency-amplitude plane for given mean axial speed and bending stiffness of the beam.  相似文献   

12.
Axially moving beam-typed structures are of technical importance and present in a wide class of engineering problem. In the present paper, natural frequencies of nonlinear planar vibration of axially moving beams are numerically investigated via the fast Fourier transform (FFT). The FFT is a computational tool for efficiently calculating the discrete Fourier transform of a series of data samples by means of digital computers. The governing equations of coupled planar of an axially moving beam are reduced to two nonlinear models of transverse vibration. Numerical schemes are respectively presented for the governing equations via the finite difference method under the simple support boundary condition. In this paper, time series of the discrete Fourier transform is defined as numerically solutions of three nonlinear governing equations, respectively. The standard FFT scheme is used to investigate the natural frequencies of nonlinear free transverse vibration of axially moving beams. The numerical results are compared with the first two natural frequencies of linear free transverse vibration of an axially moving beam. And results indicate that the effect of the nonlinear coefficient on the first natural frequencies of nonlinear free transverse vibration of axially moving beams. The numerical results also illustrate the three models predict qualitatively the same tendencies of the natural frequencies with the changing parameters.  相似文献   

13.
Accurate mechanical models of elastic beams undergoing large in-plane motions are discussed theoretically and experimentally. Employing the geometrically exact theory of rods with appropriate kinematic assumptions and asymptotic arguments, two approximate models are obtained—a relaxed model and its constrained version—that describe extensional and bending motions and neglect shear deformations. These models are shown to be suitable to predict, via an asymptotic approach, closed-form nonlinear motions of beams with general boundary conditions and, in particular, with boundary conditions that longitudinally constrain the motions. On the other hand, for axially unrestrained or weakly restrained beams, an inextensible and unshearable model is presented that describes bending motions only. The perturbations about the reference configuration up to third order are consistently derived for all beam models. Closed-form solutions of the responses to primary-resonance excitations are obtained via an asymptotic treatment of the governing equations of motion for two different beam configurations; namely, hinged–hinged (axially restrained) and simply supported (axially unrestrained) beams. In particular, considering the present theory and the existing theories, variations of the frequency–response curves with the beam slenderness or the relative boundary mass are investigated for the lowest modes. The fidelity of the proposed nonlinear models is ascertained comparing the theoretically obtained frequency–response curves of the first mode with those experimentally obtained.  相似文献   

14.
Free vibration of statically thermal postbuckled functionally graded material (FGM) beams with surface-bonded piezoelectric layers subject to both temperature rise and voltage is studied. By accurately considering the axial extension and based on the Euler-Bernoulli beam theory, geometrically nonlinear dynamic governing equations for FGM beams with surface-bonded piezoelectric layers subject to thermo-electro- mechanical loadings are formulated. It is assumed that the material properties of the middle FGM layer vary continuously as a power law function of the thickness coordinate, and the piezoelectric layers are isotropic and homogenous. By assuming that the amplitude of the beam vibration is small and its response is harmonic, the above mentioned non-linear partial differential equations are reduced to two sets of coupled ordinary differential equations. One is for the postbuckling, and the other is for the linear vibration of the beam superimposed upon the postbuckled configuration. Using a shooting method to solve the two sets of ordinary differential equations with fixed-fixed boundary conditions numerically, the response of postbuckling and free vibration in the vicinity of the postbuckled configuration of the beam with fixed-fixed ends and subject to transversely nonuniform heating and uniform electric field is obtained. Thermo-electric postbuckling equilibrium paths and characteristic curves of the first three natural frequencies versus the temperature, the electricity, and the material gradient parameters are plotted. It is found that the three lowest frequencies of the prebuckled beam decrease with the increase of the temperature, but those of a buckled beam increase monotonically with the temperature rise. The results also show that the tensional force produced in the piezoelectric layers by the voltage can efficiently increase the critical buckling temperature and the natural frequency.  相似文献   

15.
The thermo-mechanical nonlinear dynamics of a buckled axially moving beam is numerically investigated, with special consideration to the case with a three-to-one internal resonance between the first two modes. The equation of motion of the system traveling at a constant axial speed is obtained using Hamilton??s principle. A closed form solution is developed for the post-buckling configuration for the system with an axial speed beyond the first instability. The equation of motion over the buckled state is obtained for the forced system. The equation is reduced into a set of nonlinear ordinary differential equations via the Galerkin method. This set is solved using the pseudo-arclength continuation technique to examine the frequency response curves and direct-time integration to construct bifurcation diagrams of Poincaré maps. The vibration characteristics of the system at points of interest in the parameter space are presented in the form of time histories, phase-plane portraits, and Poincaré sections.  相似文献   

16.
梁的轴向运动会诱发其产生横向振动并可能导致屈曲失稳,对结构的安全性和可靠性产生重大的影响。本文重点研究了横向载荷作用下轴向运动梁的屈曲失稳及横向非线性振动特性。基于Hamilton变分原理,建立了横向载荷作用下轴向运动梁的动力学方程,获得了梁的后屈曲构型。使用截断Galerkin法,将控制方程改写成Duffing方程的形式。用同伦分析方法确定载荷作用下轴向运动梁的非线性受迫振动的封闭形式的表达式。结果表明,后屈曲构型对轴向速度和初始轴向应力有明显的依赖性。通过同伦分析法得出非线性基频的显式表达式,获得了初始轴向力会影响非线性频率随初始振幅和轴向速度的线性关系。另外,轴向外激励的方向也会改变系统固有频率。  相似文献   

17.
Several studies indicate that Eringen's nonlocal model may lead to some inconsistencies for both Euler-Bernoulli and Timoshenko beams, such as cantilever beams subjected to an end point force and fixed-fixed beams subjected a uniform distributed load. In this paper, the elastic buckling behavior of nanobeams, including both EulerBernoulli and Timoshenko beams, is investigated on the basis of a stress-driven nonlocal integral model. The constitutive equations are the Fredholm-type integral equations of the first kind, which can be transformed to the Volterra integral equations of the first kind. With the application of the Laplace transformation, the general solutions of the deflections and bending moments for the Euler-Bernoulli and Timoshenko beams as well as the rotation and shear force for the Timoshenko beams are obtained explicitly with several unknown constants. Considering the boundary conditions and extra constitutive constraints, the characteristic equations are obtained explicitly for the Euler-Bernoulli and Timoshenko beams under different boundary conditions, from which one can determine the critical buckling loads of nanobeams. The effects of the nonlocal parameters and buckling order on the buckling loads of nanobeams are studied numerically, and a consistent toughening effect is obtained.  相似文献   

18.
研究了切向均布随从力作用下热弹耦合轴向运动梁的稳定性问题。建立了热弹耦合轴向运动梁 在随从力作用下的运动微分方程,采用归一化幂级数法,推导出了2种边界条件下热弹耦合轴向运动梁在随 从力作用下的特征方程。计算了系统的前3阶量纲一复频率,分析了量纲一运动速度、量纲一热弹耦合系数 和量纲一随从力等参数对梁的稳定性的影响。  相似文献   

19.
Hu Ding  Yi Li  Li-Qun Chen 《Meccanica》2018,53(13):3233-3249
The most important issue in the vibration study of an engineering system is dynamics modeling. Axially moving continua is often discussed without the inertia produced by the rotation of the continua section. The main goal of this paper is to discover the effects of rotary inertia on the free vibration characteristics of an axially moving beam in the sub-critical and super-critical regime. Specifically, an integro-partial-differential nonlinear equation is modeled for the transverse vibration of the moving beam based on the generalized Hamilton principle. Then the effects of rotary inertia on the natural frequencies, the critical speed, post-buckling vibration frequencies are presented. Two kinds of boundary conditions are also compared. In super-critical speed range, the straight configuration of the axially moving beam loses its stability. The buckling configurations are derived from the corresponding nonlinear static equilibrium equation. Then the natural frequencies of the post-buckling vibration of the super-critical moving beam are calculated by using local linearization theory. By comparing the critical speed and the vibration frequencies in the sub-critical and super-critical regime, the effects of the inertia moment due to beam section rotation are investigated. Several interesting phenomena are disclosed. For examples, without rotary inertia, the study overestimates the stability of the axially moving beam. Moreover, the relative differences between the super-critical fundamental frequencies of the two theories may increase with an increasing beam length.  相似文献   

20.
热荷载作用下Timoshenko功能梯度夹层梁的静态响应   总被引:1,自引:0,他引:1  
在精确考虑轴线伸长和一阶横向剪切变形的基础上建立了Timoshenko功能梯度夹层梁在热载荷作用下的几何非线性控制方程.采用打靶法数值求解所得强非线性边值问题,获得了两端固支功能梯度夹层梁在横向非均匀升温作用下的静态热过屈曲和热弯曲变形数值解.分析了功能梯度材料参数变化、不同表层厚度和升温参数对夹层梁弯曲变形、拉-弯耦...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号