首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The cyclo[DKP‐isoDGR] peptidomimetics 2 – 5 , containing bifunctional diketopiperazine (DKP) scaffolds that differ in the configuration of the two DKP stereocenters and in the substitution at the DKP nitrogen atoms, were prepared and examined in vitro in competitive binding assays with purified αvβ3 and αvβ5 integrin receptors. IC50 values ranged from low nanomolar (ligand 3 ) to submicromolar with αvβ3 integrin. The biological activities of ligands cyclo[DKP3‐RGD] 1 and cyclo[DKP3‐isoDGR] 3 , bearing the same bifunctional DKP scaffold and showing similar αVβ3 integrin binding values, were compared in terms of their cellular effects in human U373 glioblastoma cells. Compounds 1 and 3 displayed overlapping inhibitory effects on the FAK/Akt integrin activated transduction pathway and on integrin‐mediated cell infiltration processes, and qualify therefore, despite the different RGD and isoDGR sequences, as integrin antagonists. Both compounds induced apoptosis in glioma cells after 72 hour treatment.  相似文献   

2.
Ligand-based control of protein functional motions can provide novel opportunities in the study of fundamental biological mechanisms and in the development of novel therapeutics. In this work we addressed the ligand-based modulation of integrin functions. Inhibitors of integrin αvβ3 are interesting anticancer agents but their molecular mechanisms are still unclear: Peptides and peptidomimetics characterized by the Arg-Gly-Asp (RGD) or isoAsp-Gly-Arg (isoDGR) binding motifs have shown controversial agonist/antagonist effects. We have investigated the differential mechanisms of integrin activation/deactivation by three distinct ligands (cyclo-RGDf(NMe)V (Cilengitide), cyclo[DKP3-RGD], cyclo[DKP3-isoDGR]; DKP=diketopiperazine) through a comparative analysis of ligand-controlled protein internal dynamics: Although RGD facilitates the onset of dynamic states leading to activation, isoDGR induces a diffuse rigidification of the complex consistent with antagonist activities. Computational predictions have been experimentally probed by showing that the antibody AP5, which is capable of recognizing the active form of integrin, binds specifically to the RGD complexes and not to the isoDGR complex, which supports opposite functional roles of the two motifs targeting the same binding site.  相似文献   

3.
The use of multimeric ligands is considered as a promising strategy to improve tumor targeting for diagnosis and therapy. Herein, tetrameric RGD (Arg-Gly-Asp) peptidomimetics were designed to target αvβ3 integrin-expressing tumor cells. These compounds were prepared by an oxime chemoselective assembly of cyclo(DKP-RGD) ligands and a cyclodecapeptide scaffold, which allows a tetrameric presentation. The resulting tetrameric RGD peptidomimetics were shown to improve αvβ3 integrin binding compared with the monomeric form. Interestingly, these compounds were also able to enhance tumor cell endocytosis in the same way as tetrameric RGD peptides. Altogether, the results show the potential of the tetrameric cyclo(DKP-RGD) ligands for in vivo imaging and drug delivery.  相似文献   

4.
A practical synthesis of a new bifunctional diketopiperazine (DKP) scaffold 1, formally derived from the cyclization of L-aspartic acid and (S)-2,3-diaminopropionic acid, is reported. DKP-1 bears a carboxylic acid and an amino functionalities in a cis relationship, which have been used to grow peptide sequences. Tetra-, penta-, and hexapeptidomimetic sequences were prepared by solution-phase peptide synthesis (Boc strategy). Conformational analysis of these derivatives was carried out by a combination of 1H NMR spectroscopy, IR spectroscopy, CD spectroscopy, and computer modeling, and reveals the formation of beta-hairpin mimics involving 10-membered and 18-membered H-bonded rings and a reverse turn of the growing peptide chain.  相似文献   

5.
We present a click chemistry‐based molecular toolkit for the biofunctionalization of materials to selectively control integrin‐mediated cell adhesion. To this end, α5β1‐selective RGD peptidomimetics were covalently immobilized on Ti‐based materials, and the capacity to promote the selective binding of α5β1 was evaluated using a solid‐phase integrin binding assay. This functionalization strategy yielded surfaces with a nine‐fold increased affinity for α5β1, in comparison to control samples, and total selectivity against the binding of the closely related integrin αvβ3. Moreover, our methodology allowed the screening of several phosphonic acid containing anchoring units to find the best spacer–anchor moiety required for establishing an efficient binding to titanium and to promote selective integrin binding. The integrin subtype specificity of these biofunctionalized surfaces was further examined in vitro by inducing selective adhesion of genetically modified fibroblasts, which express exclusively the α5β1 integrin. The versatility of our molecular toolkit was proven by shifting the cellular specificity of the materials from α5β1‐ to αvβ3‐expressing fibroblasts by using an αvβ3‐selective peptidomimetic as coating molecule. The results shown here represent the first functionalization of Ti‐based materials with α5β1‐ or αvβ3‐selective peptidomimetics that allow an unprecedented control to discriminate between α5β1‐ and αvβ3‐mediated adhesions. The role of these two integrins in different biological events is still a matter of debate and is frequently discussed in literature. Thus, such bioactive titanium surfaces will be of great relevance for the study of integrin‐mediated cell adhesion and the development of new biomaterials targeting specific cell types.  相似文献   

6.
Aza-peptides are obtained by replacement of the α-C-atom of one or more amino acids by a nitrogen atom in a peptide sequence. Introduction of aza-residues into peptide sequences may result in unique structural and pharmacological properties, such that aza-scanning may be used to probe structure-activity relationships. In this study, a general approach for the synthesis of cyclic aza-peptides was developed by modification of strategies for linear aza-peptide synthesis and applied in the preparation of cyclic aza-pentapeptides containing the RGD (Arg-Gly-Asp) sequence. Aza-amino acid scanning was performed on the cyclic RGD-peptide Cilengitide, cyclo[R-G-D-f-N(Me)V] 1, and its parent peptide cyclo(R-G-D-f-V) 2, potent antagonists of the αvβ3, αvβ5, and α5β1 integrin receptors, which play important roles in human tumor metastasis and tumor-induced angiogenesis. Although incorporation of the aza-residues resulted generally in a loss of binding affinity, cyclic aza-peptides containing aza-glycine retained nanomolar activity toward the αvβ3 receptor.  相似文献   

7.
Cyclic RGD peptides are well-known ligands of integrins. The integrins αVβ3 and α5β1 are involved in angiogenesis, and integrin αVβ3 is abundantly present on cancer cells, thus representing a therapeutic target. Hence, synthetic and biophysical studies continuously are being directed towards the understanding of ligand-integrin interaction. In this context, the development of versatile synthetic strategies to obtain fluorescent building blocks that can add molecular diversity and modular spectral characteristics while not compromising binding affinity or selectivity is a relevant task. An on-resin intramolecular Suzuki–Miyaura cross-coupling (SMC) between l - or d -7-bromotryptophan (7BrTrp) and a phenothiazine (Ptz) boronic acid affords fluorescent cyclic RGD pseudopeptides, c(RGD(W/w)Ptz). Ring closure by SMC establishes a phenothiazine–indole moiety with axial chirality. An array of eight novel compounds has been synthesized, among them one fluorescent compound with good affinity to integrin αVβ3. The fluorescence properties of the analogues can be efficiently tuned depending on the substituents in Ptz moiety even for fluorescence emission in the visible (red) spectral range.  相似文献   

8.
A highly systematic approach for the development of both orally bioavailable and bioactive cyclic N‐methylated hexapeptides as high affinity ligands for the integrin αvβ3 is based on two concepts: a) screening of systematically designed libraries with spatial diversity and b) masking of the peptide charge with a lipophilic protecting group. The key steps of the method are 1) initial design of a combinatorial library of N‐methylated analogues of the stem peptide cyclo(d ‐Ala‐Ala5); 2) selection of cyclic peptides with the highest intestinal permeability; 3) design of sublibraries with the bioactive RGD sequence in all possible positions; 4) selection of the best ligands for RGD‐recognizing integrin subtypes; 5) fine‐tuning of the affinity and selectivity by additional Ala to Xaa substitutions; 6) protection of the charged functional groups according to the prodrug concept to regain intestinal and oral permeability; 7) proof of biological effects in mice after oral administration.  相似文献   

9.
The αvβ6 integrin binds the RGD‐containing peptide of the foot and mouth disease virus with high selectivity. In this study, the long binding helix of this ligand was downsized to an enzymatically stable cyclic peptide endowed with sub‐nanomolar binding affinity toward the αvβ6 receptor and remarkable selectivity against other integrins. Computational studies were performed to disclose the molecular bases underlying the high binding affinity and receptor subtype selectivity of this peptide. Finally, the utility of the ligand for use in biomedical studies was also demonstrated here.  相似文献   

10.
A photoresponsive integrin ligand was synthesized by backbone-cyclization of a heptapeptide containing the integrin binding motif Arg-Gly-Asp (RGD) with 4-(aminomethyl)phenylazobenzoic acid (AMPB). Surface plasmon enhanced fluorescence spectroscopy showed that binding of the azobenzene peptide to alpha(v)beta(3) integrin depends on the photoisomeric state of the peptide chromophore. The higher affinity of the trans isomer could be rationalized by comparing the NMR conformations of the cis and trans isomers with the recently solved X-ray structure of a cyclic RGD-pentapeptide bound to integrin.  相似文献   

11.
Two new cyclic RGD peptides were prepared using a click chemistry approach. The linear RGDfV peptide was synthesized by solid-phase peptide synthesis using a 9-fluorenylmetoxicarbonyl (Fmoc) strategy and a 2-chlorotrityl chloride resin. After coupling 5-hexynoic acid the peptide was cleaved from the resin and linked to propargylamine. The bis-alkynyl RGDfV peptide was then reacted with two different bis-azides by treatment with copper iodide and triethylamine. These two cyclic RGD peptides were characterized by NMR and HRMS. In order to evaluate the interaction of these new compounds with integrin αvβ3 docking experiments were carried out and the results compared with those obtained with cyclo(RGDf[N–Me]V) (Cilengitide). The two new cyclic RGD peptides showed a higher affinity to the αvβ3 integrin when compared with Cilengitide thus representing two new potential integrin αvβ3 antagonists.  相似文献   

12.
Two small‐molecule–drug conjugates (SMDCs, 6 and 7 ) featuring lysosomally cleavable linkers (namely the Val–Ala and Phe–Lys peptide sequences) were synthesized by conjugation of the αvβ3‐integrin ligand cyclo[DKP–RGD]‐CH2NH2 ( 2 ) to the anticancer drug paclitaxel (PTX). A third cyclo[DKP–RGD]–PTX conjugate with a nonpeptide “uncleavable” linker ( 8 ) was also synthesized to be tested as a negative control. These three SMDCs were able to inhibit biotinylated vitronectin binding to the purified αVβ3‐integrin receptor at nanomolar concentrations and showed good stability at pH 7.4 and pH 5.5. Cleavage of the two peptide linkers was observed in the presence of lysosomal enzymes, whereas conjugate 8 , which possesses a nonpeptide “uncleavable” linker, remained intact under these conditions. The antiproliferative activities of the conjugates were evaluated against two isogenic cell lines expressing the integrin receptor at different levels: the acute lymphoblastic leukemia cell line CCRF‐CEM (αVβ3?) and its subclone CCRF‐CEM αVβ3Vβ3+). Fairly effective integrin targeting was displayed by the cyclo[DKP–RGD]–Val–Ala–PTX conjugate ( 6 ), which was found to differentially inhibit proliferation in antigen‐positive CCRF‐CEM αVβ3 versus antigen‐negative isogenic CCRF‐CEM cells. The total lack of activity displayed by the “uncleavable” cyclo[DKP–RGD]–PTX conjugate ( 8 ) clearly demonstrates the importance of the peptide linker for achieving the selective release of the cytotoxic payload.  相似文献   

13.
A γ-AApeptide-based tracer for positron emission tomography imaging of integrin α(v)β(3) is reported. Despite its shorter sequence and linear nature, this tracer had comparable integrin α(v)β(3) binding affinity to the cyclic arginine-glycine-aspartic acid peptide but significantly higher resistance to enzymatic degradation and better stability.  相似文献   

14.
Even though the blood–brain barrier (BBB) is compromised for angiogenesis, therapeutic agents for glioblastoma multiforme (GBM) are particularly inefficient due to the existence of a blood–tumor barrier (BTB), which hampers tumor accumulation and uptake. Integrin αvβ3 is overexpressed on glioblastoma U87 cells and neovasculture, thus making its ligands such as the RGD motif target glioblastoma in vitro and in vivo. In the present work, we have designed a modified polyethylene glycol–polyethylenimine (PEG–PEI) gene carrier by conjugating it with a cyclic RGD sequence, c(RGDyK) (cyclic arginine‐glycine‐aspartic acid‐D ‐tyrosine‐lysine). When complexed with plasmid DNA, this gene carrier, termed RGD–PEG–PEI, formed homogenous nanoparticles with a mean diameter of 73 nm. These nanoparticles had a high binding affinity with U87 cells and facilitated targeted gene delivery against intracranial glioblastoma in vivo, thereby leading to a higher gene transfer efficiency compared to the PEG–PEI gene carrier without RGD decoration. This intracranial glioblastoma‐targeted gene carrier also enhanced the therapeutic efficacy of pORF‐hTRAIL, as evidenced by a significantly prolonged survival of intracranial glioblastoma‐bearing nude mice. Considering the contribution of glioblastoma neovasculature to the BBB under angiogenic conditions, our results demonstrated the therapeutic feasibility of treating a brain tumor through mediation of integrin αvβ3, as well as the potential of using RGD–PEG–PEI as a targeted gene carrier in the treatment of intracranial glioblastoma.  相似文献   

15.
The reactivity of both the ester and amine functions present in β-amino esters was tested in order to obtain the synthesis of enantiopure αvβ3 and α5β1 integrin ligands. CaLB successfully catalyzed both the enantioselective transesterification and the N-acylation of racemic β-amino esters, allowing the isolation of intermediates for the preparation of Arg-Gly-Asp (RGD) mimetic compounds. In particular, a CaLB-catalyzed amidation reaction with unprotected p-aminobenzylamine reduced the number of synthetic steps, thus avoiding protection and deprotection of the intermediate compounds. Following this procedure, RGD mimetics were isolated with high yields and enantiomeric purities.  相似文献   

16.
Sugar amino acids (SAAs) are useful building blocks for the design of peptidomimetics and peptide scaffolds. The three-dimensional structures of cyclic hybrid molecules containing the furanoid epsilon-SAA III and several amino acids were elucidated to study the preferred conformation of such an epsilon-SAA and its conformational influence on the backbone of cyclic peptides. NMR-based molecular dynamics simulations and empirical calculations of the cyclic tetramer 1, consisting of two copies of the SAA residue and two amino acids, revealed that it is conformationally restrained. The two SAA residues adopt different conformations. One of them forms an unusual turn, stabilized by an intraresidue nine-member hydrogen bond. The methylene functionalities of the other SAA residue are positioned in such a way that an intraresidue H bond is not possible. The X-ray crystal structure of 1 strongly resembles the solution conformation. Molecular dynamics calculations in combination with NMR analysis were also performed for compounds 2 and 3, which contain the RGD (Arg-Gly-Asp) consensus sequence and were previously shown to inhibit alpha(IIb)beta(3)-receptor-mediated platelet aggregation. The biologically most active compound 2 adopts a preferred conformation with the single SAA residue folded into the nine-member H bond-containing turn. Compound 3, containing an additional valine residue, as compared with compound 2, is conformational flexible. Our studies demonstrate that the furanoid epsilon-SAA III is able to introduce an unusual intraresidue hydrogen bond-stabilized beta-turn-like conformation in two of the three cyclic structures.  相似文献   

17.
This paper concerns peptidomimetic scaffolds that can present side chains in conformations resembling those of amino acids in secondary structures without incurring excessive entropic or enthalpic penalties. Compounds of this type are referred to here as minimalist mimics. The core hypothesis of this paper is that small sets of such scaffolds can be designed to analogue local pairs of amino acids (including noncontiguous ones) in any secondary structure; i.e., they are universal peptidomimetics. To illustrate this concept, we designed a set of four peptidomimetic scaffolds. Libraries based on them were made bearing side chains corresponding to many of the protein-derived amino acids. Modeling experiments were performed to give an indication of kinetic and thermodynamic accessibilities of conformations that can mimic secondary structures. Together, peptidomimetics based on these four scaffolds can adopt conformations that resemble almost any combination of local amino acid side chains in any secondary structure. Universal peptidomimetics of this kind are likely to be most useful in the design of libraries for high-throughput screening against diverse targets. Consequently, data arising from submission of these molecules to the NIH Molecular Libraries Small Molecule Repository (MLSMR) are outlined.  相似文献   

18.
Azabicyclo[2.2.1]heptane and -[3.3.1]nonane scaffolds (X = Cl, Br) containing a pyridinyl substituent at the bridgehead position were prepared via two complementary chemical pathways, either by the transformation of a methoxy group into a synthetically valuable chlorine atom at the C-6 position of the pyridine moiety or by means of a regioselective C-6 deprotonation/halogenation process of the pyridine moiety exemplified by chlorination or bromination. These newly generated scaffolds were then engaged in Suzuki-Miyaura coupling reactions to provide α7 nicotinic ligands. Both chemical series were evaluated in vitro for their affinity at α7 nicotinic receptors, revealing nanomolar potency with significant selectivity over the α4β2 nicotinic subtype. These approaches offer a general access to these α7 nicotinic scaffolds and ligands.  相似文献   

19.
Near-infrared emissive BODIPY polymeric dye bearing cancer-homing cyclic arginine–glycine–aspartic acid (RGD) peptide residues (polymer B) was prepared by post-polymerization functionalization of BODIPY polymeric dye bearing bromo groups through tetra(ethylene glycol) tethered spacers (polymer A) with thiol-functionalized RGD cancer-homing peptide through thioether bonds under a mild basic condition. Polymer B possesses excellent water solubility, good photostability, biocompatibility and resistance to nonspecific interactions to normal endothelial cells, and can efficiently detect breast tumor cells through specific cooperative binding of cancer-homing RGD peptides to αvβ3 integrins of cancer cells while its parent polymer A without RGD residues fails to target cancer cells.  相似文献   

20.
A combined quantum mechanical (QM)‐polarized docking and molecular dynamics approach to study the binding mode and to predict the binding affinity of ligands acting at the α4β2‐nAChR is presented. The results obtained in this study indicate that the quantum mechanical/molecular mechanics docking protocol well describes the charge‐driven interactions occurring in the binding of nicotinic agonists, and it is able to represent the polarization effects on the ligand exerted by the surrounding atoms of the receptor at the binding site. This makes it possible to properly score agonists of α4β2‐nAChR and to reproduce the experimental binding affinity data with good accuracy, within a mean error of 2.2 kcal/mol. Moreover, applying the QM‐polarized docking to an ensemble of nAChR conformations obtained from MD simulations enabled us to accurately capture nAChR‐ligand induced‐fit effects. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号