首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glutaric dihydrazide (GDH) and adipic dihydrazide (ADH) have been found to react with Co(II) chloride and Ni(II) chloride and nitrate in ethanolic solution to form complexes of the general empirical compositionsMLCl2,ML 2Cl2 and [NiL 2(H2O)2] (NO3)2 whereM=Co(II), Ni(II) andL=GDH,ADH. Tetrahedral geometry has been proposed for 11 complexes of Co(II) and octahedral geometry for the remaining complexes based on measurements of molar conductance, magnetic susceptibility, electronic and ir spectra.
Synthese und Struktur von Co(II)- und Ni(II)-Komplexen von Glutarsäure- und Adipinsäuredihydraziden
Zusammenfassung Glutarsäuredihydrazid (GDH) und Adipinsäuredihydrazid (ADH) bilden mit Co(II)-Chlorid und Ni(II)-Chlorid bzw.-Nitrat in ethanolischer Lösung Komplexe der generellen ZusammensetzungenMLCl2,ML 2Cl2 und [NiL(H2O)2] (NO3)2, mitM=Co(II), Ni(II) undL=GDH,ADH. Für 11-Komplexe von Co(II) wird eine tetragonale Geometrie, für alle anderen Komplexe eine oktaedrische Geometrie vorgeschlagen. Die Basis dazu lieferten Messungen der molaren Leitfähigkeit, der magnetischen Suszeptibilität und der UV- bzw. IR-Spektren.
  相似文献   

2.
Summary Dicyanamide complexes of CuII, NiII and CoII of the type M[N(CN)2]2L2, where L = benzimidazole, 2-methyl- or 2-ethylbenzimidazole, have been prepared and studied by spectroscopy and magnetochemistry. The complexes, except for Co[N(CN)2]2 (benzimidazole)2, are six-coordinate, involving bidentate bridging dicyanamide groups. While the NiII complexes have practically octahedral structures, the CuII complexes are pseudooctahedral with similar tetragonal distortion. The ligand field strength in these complexes depends mainly on the steric effect of the benzimidazole ligands. The CoII complex of benzimidazole is monomeric tetrahedral, but that of 2-ethylbenzimidazole is tetragonal octahedral. The oridging function of dicyanamide in the six-coordinate complexes is realized either through both cyanide or through amide and cyanide nitrogens. The complex Cu[N(CN)2]2 (2-methylbenzimidazole)2 is a weak antiferromagnet (J = -0.1 cm–1), exhibiting under ca. 15 K a long-range antiferromagnetic ordering.  相似文献   

3.
The 3d transition metalion [Co(II), Ni(II) and Cu(II)] complexes of some 4,5-diphenylimidazole azo derivatives have been isolated and characterized by chemical analysis, conductance, electronic and IR spectra. These dyes are characterized by a high tendency towards complex formation with the neutral molecules coordinated to the metal ion as bidentate ligands. The molecular formula of the 1:1 and 1:2 complexes are suggested to be [MLX 2(H2O)2] and [ML 2 X 2] or [ML 2 X 2]·2H2O respectively, whereX=Cl or NO3. the different bands observed in the visible spectra of methanolic solutions of the complexes have been assigned to the possible electronic transition type (L MCT and d-d). It is suggested that the complexes studied have a distorted octahedral geometry.
Koordinatsverbindungen von heterocyclischen Azo-Derivaten, 3. Mitt.: Co(II)-, Ni(II)- und Cu(II)-Komplexe einiger Arylazo-4,5-diphenylimidazol-Derivate
Zusammenfassung Es wurden einige Komplexe von 4,5-Diphenylimidazol-azo-Derivaten mit den 3 d-Übergangsmetallen Co(II), Ni(II) und Cu(II) isoliert und mittels chemischer Analyse, Leitfähigkeitsmessungen und den Elektronen- bzw. IR-Spektren charakterisiert. Diese Farbstoffe zeigen eine sehr starke Tendenz zur Komplexbildung, wobei die neutralen Moleküle als zweizähnige Liganden an das Metallion koordinieren. Die Formeln für die 1:1- und 1:2-Komplexe werden mit [MLX 2(H2O)2] und [ML 2 X 2] bzw. [ML 2 X 2]·2H2O vorgeschlagen (X=Cl oder NO 3 ). Die verschiedenen Absorptionsbanden in den VIS-Spektren in methanolischer Lösung werden den möglichen e-Übergängen (L MCT und d-d) zugeordnet. Für die Komplexe werden verzerrte oktaedrische Geometrien vorgeschlagen.
  相似文献   

4.
Co(II), Ni(II) and Cu(II) complexes of some bifunctional arylidene-o-phenylenediamineSchiff bases have been prepared. Formation, stoichiometry and stability of the complexes have been tested in solution using electronic spectral measurements. Characterization of the complexes has been accomplished primarily by elemental analysis, molar conductance as well as electronic and IR spectral measurements. It is concluded that theo,o-hydroxy derivative (L 1) acts as a bivalent ONNO tetradentate ligand while the molecules of the other derivatives (L 2-L 5) are coordinated to the metal ions as bidentate NN ligands. The Cu(II)-L 1 complex is suggested to possess a tetrahedral geometry whereas the other complexes are suggested to exhibit a distarted octahedral geometry. The different bands observed in the electronic spectra of the complexes inDMF solutions have been assigned to the -*,L M CT and d-d electronic transitions.
Untersuchungen zur Charakterisierung einiger zwei- und vierzähniger bifunktionellerSchiffbasen-Komplexe mit Co(II), Ni(II) und Cu(II)
Zusammenfassung Es wurden die Co(II)-, Ni(II)- und Cu(II)-Komplexe einiger bifunktioneller Aryliden-o-phenylendiamin-Schiffbasen hergestellt. Unter Verwendung elektronenspektroskopischer Methoden wurde die Bildung, Stöchiometrie und Stabilität der Komplexe in Lösung untersucht. Die Charakterisierung erfolgte mittels Elementaranalysen, Leitfähigkeitsmessungen und Elektronen- bzw. IR-Spektroskopie. Es wird darauf geschlossen, daß daso,o-HydroxyderivatL 1 als bivalenter vierzähniger ONNO Ligand wirkt, während die anderen Derivate (L 2-L 5) als zweizähnige NN Liganden an die Metallionen koordiniert sind. Für den Cu(II)-L 1 Komplex wird eine tetraedrische Geometrie vorgeschlagen, währenddessen die anderen Komplexe eine verzerrte octaedrische Geometrie aufweisen. Die in den Elektronenspektren der Komplexe inDMF-Lösung auftretenden Banden werden den -*,L M CT und d-d Elektronenübergängen zugeordnet.
  相似文献   

5.
Compounds of the type M3[Fe(CN)6]2XH2O (M = Co(II), Ni(II), Cu(II), and Zn(II)) were prepared and magnetic properties of their powders were investigated by means of EPR spectra, Mössbauer effect and magnetic susceptibility measurements. The temperature dependence of the magnetization for the complexes Co3[Fe(CN)5]2- 10H2O, Ni3[Fe(CN)6]2-10H2O and Cu3[Fe(CN)6]2-4H2O revealed that below the critical temperatures 15, 22 and 20 K respectively, these complexes have zero-field magnetization. The magnetic hysteresis at 10 K for Co(II), Ni(II) and Cu(II) complexes was observed. Mössbauer spectra at 4.2 K for the compounds are discussed.  相似文献   

6.
Three new metal complexes of 4,6-bis(4-chlorophenyl)-2-amino-1,2-dihydropyridine-3-carbinitrile (L) with Co(II), Ni(II) and Cu(II) were synthesized and characterized with physicochemical and spectroscopic techniques. The data suggest that (L) acts as a bidentate ligand bound to the divalent metal ions through amino N and carbinitrile N atoms having [M(L)2(H2O)2]2+ formula (M = metal ions). The theoretical parameters, model structures, charges and molecular orbitals of all possible complexes have been determined using density functional theory. The energy gap of free ligand is ?E = 0.12565 eV, and this value is greater than energy gap of complexes, which indicates that the complexes are more reactive than free ligand. Also, ?E of Co(II) complex is lower than other complexes, which indicates that Co(II) complex is more reactive than Ni(II) and Cu(II) complexes. The antibacterial and antifungal activities of the ligand, metal salts and its complexes were tested against some microorganisms (bacteria and fungi). The complexes showed increased antibacterial and antifungal profile in comparison with the free ligand.  相似文献   

7.
The reaction of aquo-ethanolic solutions of Co(II), Ni(II) and Cu(II) salts and ethanolic solution of capric acid hydrazide (L) yielded paramagnetic, high-spin bis- and tris(ligand) chelate complexes. The tris(ligand) complexes, [ML 3]X 2·nH2O [M=Co(II), Ni(II);X=NO 3 , ClO 4 , 1/2SO 4 2– ], have an octahedral structure formed on account of the bidentate (NO) coordination of three neutral hydrazide molecules. In the bis(ligand) complexes,ML 2(NCS)2 [M=Co(II), Ni(II)] and CuL 2 X 2·nH2O (X=NO 3 , ClO 4 and 1/2SO 4 2– ), the oxoanions and NCS take also part in coordination. The complexes have been characterized by elemental analysis, IR spectra, magnetic measurements, molar conductivity and TG analysis.
Caprinsäurehydrazid-Komplexe von Co(II), Ni(II) und Cu(II)
Zusammenfassung Durch die Reaktion von wäßrig-ethanolischen Lösungen von Co(II)-, Ni(II)-und Cu(II)-Salzen mit einer ethanolischen Lösung von Caprinsäurehydrazid (L) wurden paramagnetische high-spin Bis- und Tris-Ligand-Chelatkomplexe erhalten. Tris-Ligand-Komplexe des Typs [ML 3 X 2·nH2O [M=Co(II), Ni(II);X=NO 3 , ClO 4 , 1/2SO 4 2– ], die eine oktaedrische Struktur besitzen, entstehen durch die Koordination von drei neutralen zweizähnigen (NO)-Hydrazidmolekülen. Bei den Bis-Ligand-KomplexenML 2(NCS)2 [M=Co(II), Ni(II)], sowie bei den Bis-Ligand-Komplexen CuL 2 X 2·nH2O (X=NO 3 , ClO 4 , 1/2SO 4 2– ) nehmen bei der Koordination außer Hydrazid auch die Säurereste teil. Die Komplexe wurden durch Elementaranalyse, IR-Spektren, magnetische Messungen, molare Leitfähigkeit und TG-Analysen charakterisiert.
  相似文献   

8.
Bibracchial lariat ethers L3 and L4, derived from the condensation of N,N′-bis(2-aminobenzyl)-1,10-diaza-15-crown-5 or N,N′-bis(2-aminobenzyl)-4,13-diaza-18-crown-6 with salicylaldehyde, form binuclear complexes with Co(II), Ni(II), Cu(II) and Zn(II). Our studies show that the different denticity and crown moiety size of the two related receptors give rise to important differences on the structures of the corresponding complexes. Single crystal X-ray diffraction analysis shows that the [Ni2(L3)(H2O)2]2+ and [Cu2(L3)(NO3)]+ complexes constitute a rare example in which an oxygen atom of the crown moiety is bridging the two six coordinate metal ions. In contrast, none of the oxygen atoms of the crown moiety is acting as a bridging donor atom in the [Co2(L4)(CH3CN)2]2+, [Cu2(L4)]2+ and [Zn2(L4)]2+ complexes. This is attributed to the larger size the crown moiety and the higher denticity of L4 compared to L3. In [Co2(L4)(CH3CN)2]2+ the metal ions show a distorted octahedral coordination, while in the Cu(II) and Zn(II) analogues the metal ions are five-coordinated in a distorted trigonal bipyramidal environment. In [Cu2(L3)(NO3)]+ the coordinated nitrate anion acts as a bidentate bridging ligand, which results in the formation of a 1D coordination polymer.  相似文献   

9.
Homo and heterobinuclear complexes of arylidene- anthranilic acids with Cu(II), Ni(II) and Co(II) are prepared and characterised by chemical analysis, spectral and X-ray diffraction techniques as well as conductivity measurements. Two types of homo-binuclear complexes are formed. The first has the formula M2L2Cl2(H2O)n where M=Cu(II), Ni(II) and Co(II), L = p-hydroxybenzylideneanthranilic acid (hba), p-dimethylaminobenzylideneanthranilic acid (daba) and p-nitrobenzylideneanthranilic acid(nba) and n = 0–3. The second type has the formula M2LCl3(H2O)n in which M is the same as in the first type, L = benzylideneanthranilic acid (ba), (daba) (in cases of Cu(II) and Ni(II)); and n = 1–5. Heterobinuclear complexes having the formula (MLCl2H2O) MCl2(H2O)n are isolated by reaction of Cu(II) binary chelates with Ni(II) and/or Co(II) chlorides. These are also characterized and their structures are elucidated.  相似文献   

10.
Cobalt(II), nickel(II), and copper(II) complexes containing 5,12-di(4-bromophenyl)-7,14-dimethyl-1,2,4,8,9,11-hexaazacyclotetradeca-7,14-diene-3,10-dione (H2L1) and 5,12-diphenyl-7,14-dimethyl-1,2,4,8,9,11-hexaazacyclotetradeca-7,14-diene-3,10-dione (H2L2) have been synthesized. All complexes were characterized by elemental analysis, MALDI TOF-MS spectrometry, and electronic absorption spectroscopy. The crystal structures of two compounds, [Cu2(H2L1)Cl4]n and [NiL2], were determined by X-ray powder diffraction. In the polymeric [Cu2(H2L1)Cl4]n, the Cu2Cl4 units and H2L1 molecules are situated on inversion centers. Each Cu(II) has a distorted trigonal-bipyramidal coordination environment formed by N and O from H2L1 [Cu–N 2.340(14)?Å, Cu–O 1.952(11)?Å], two bridging chlorides [Cu–Cl 2.332(5), 2.279(5)?Å] and one terminal chloride [Cu–Cl 2.320(6)?Å]. In the [NiL2] complex, the Ni(II) situated on inversion center has a distorted square-planar coordination environment formed by four nitrogens from L2 [Ni–N 1.860(11), 1.900(11)?Å].  相似文献   

11.
Conditions for the preparation of Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) 4-methylphthalates were investigated and their composition, solubility in water at 295 K and magnetic moments were determined. IR spectra and powder diffraction patterns of the complexes prepared with molar ratio of metal to organic ligand of 1.0:1.0 and general formula: M [ CH3C6H3(CO2)2nH2o (n=1-3) were recorded and their decomposition in air were studied. During heating the hydrated complexes are dehydrated in one (Mn, Co, Ni, Zn, Cd) or two steps (Cu) and next the anhydrous complexes decompose to oxides directly (Cu, Zn), with intermediate formation of carbonates (Mn, Cd), oxocarbonates (Ni) or carbonate and free metal (Co). The carboxylate groups in the complexes studied are mono- and bidentate (Co, Ni), bidentate chelating and bridging (Zn) or bidentate chelating (Mn, Cu, Cd). The magnetic moments for paramagnetic complexes of Mn(II), Co(II), Ni(II) and Cu(II) attain values 5.92, 5.05, 3.36 and 1.96 M.B., respectively. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
A series of binuclear Co(II), Ni(II) and Cu(II) complexes were synthesized by the template condensation of glyoxal, biacetyl or benzil bis-hydrazide, 2,6-diformyl-4-methylphenol and Co(II), Ni(II) or Cu(II) chloride in a 2:2:2 M ratio in ethanol. These 22-membered macrocyclic complexes were characterized by elemental analyses, magnetic, molar conductance, spectral, thermal and fluorescence studies. Elemental analyses suggest the complexes have a 2:1 stoichiometry of the type [M2LX2nH2O and [Ni2LX22H2O]·nH2O (where M = Co(II) and Cu(II); L = H2L1, H2L2 and H2L3; X = Cl; n = 2). From the spectroscopic and magnetic studies, it has been concluded that the Co(II) and Cu(II) complexes display a five coordinated square pyramidal geometry and the Ni(II) complexes have a six coordinated octahedral geometry. The Schiff bases and their metal complexes have also been screened for their antibacterial and antifungal activities by the MIC method.  相似文献   

13.
Conditions for the preparation of Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II)3,3-dimethylglutarates were investigated and their quantitative composition, solubility in water at 293 K and magnetic moments were determined. IR spectra and powder diffraction patterns of the complexes prepared with general formula MC7H10O4nH2O (n=0−2) were recorded and their thermal decomposition in air were studied. During heating the hydrated complexes of Mn(II),Co(II), Ni(II) and Cu(II) are dehydrated in one step and next all the anhydrous complexes decompose to oxides directly (Mn, Co, Zn) or with intermediate formation free metal (Ni,Cu) or oxocarbonates (Cd). The carboxylate groups in the complexes studied are bidentate. The magnetic moments for the paramagnetic complexes of Mn(II), Co(II), Ni(II) and Cu(II)attain values 5.62, 5.25, 2.91 and 1.41 M.B., respectively. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
The mixed 2,4'-bipyridine-oxalato complexes of the formulae M(2,4'-bipy)2 C2 O4 2H2 O (M (II)=Mn, Co, Ni, Cu; 2,4'-bipyridine=2,4'-bipy or L ; C2 O2– 4 =ox) have been prepared and characterized. IR data show that the 2,4'-bipy coordinated with these metals(II) via the least hindered (4')N atom; that oxalate group acts as bidentate chelating ligand. Room temperature magnetic moments are normal for the orbital singlet states. The thermal decomposition of these complexes was investigated by TG, DTA and DTG in air. The endothermic or exothermic character of the decomposition of ML2 (ox)2H2 O was discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
Summary A series of 20–24 membered macrocyclic dinuclear transition metal complexes [M2L1X4]-[M2L4X4] (M = NiII, CuII or ZnII; X = Cl or NO3) have been synthesized by template condensation of diethylenetriamine with dicarboxylic acids. The bonding and stereochemistry of the complexes have been characterized by i.r.,1H-n.m.r., e.p.r. and electronic spectral studies, magnetic susceptibility and conductivity measurements. The Ni and Zn complexes exhibit octahedral geometry around the metal ion, whereas the Cu complexes possess a distorted octahedral geometry. Each metal ion is coordinated by two amide nitrogens and two secondary nitrogens of the diethylenetriamine moiety; the fifth and sixth coordination sites are occupied by the anions.  相似文献   

16.
An aminonaphthoquinone ligand, L, and its metal complexes of general formula [MLCl2] {M = Co(II), Ni(II), Cu(II) and Zn(II)} have been synthesized and characterized by analytical and spectral techniques. Tetrahedral geometry has been assigned to Ni(II) and Zn(II) complexes and square planar geometry to Co(II) and Cu(II) complexes on the basis of electronic spectral and magnetic susceptibility data. The binding of complexes with bovine serum albumin (BSA) is relatively stronger than that of free ligand and alters the conformation of the protein molecule. Interaction of these complexes with CT-DNA has been investigated using UV-Vis and fluorescence quenching experiments, which show that the complexes bind strongly to DNA through intercalative mode of binding (Kapp 105 M?1). Molecular docking studies reiterate the mode of binding of these compounds with DNA, proposed by spectral studies. The ligand and its complexes cleave plasmid DNA pUC18 to nicked (Form II) and linear (Form III) forms in the presence of H2O2 oxidant. The in vitro cytotoxicity screening shows that Cu(II) complex is more potent against MCF-7 cells and Zn(II) complex exhibits marked cytotoxicity against A-549 cells equal to that of cisplatin. Cell imaging studies suggested apoptosis mode of cell death in these two chosen cell lines.  相似文献   

17.
Summary The chlorides and bromides of cobalt(II), nickel(II) and copper(II) along with the acetates of the latter two metal ions and copper(II) tetrafluoroborate were used to prepare complexes ofN-2-(5-picolyl)-N-phenylthiourea (5MTUH). 5MTUH coordinates as a bidentate ligand via the pyridyl nitrogen and the sulphur atoms in the cobalt(II) complexes and the compounds isolated with Cu(BF4)2 and CuCl2. Complexes of stoichiometry [Cu(5MTU)X] (X=Br or C2H3O2) appear to have the deprotonated ligand coordinated via the pyridyl andN thioamide nitrogens and the sulphur atom. The nickel(II) complexes involve monodentate 5MTUH with sulphur being the donor atom. A violet, octahedral [Co(5MTUH)2Cl2] complex and a blue, tetrahedral [Co(5MTUH)Cl2] complex have been isolated, but with CoBr2 only an octahedral complex could be prepared.  相似文献   

18.
The synthesis and characterization of new transition metal complexes of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) with 3‐(2‐hydroxynaph‐1‐ylazo)‐1,2,4‐triazole ( HL1 ) and 3‐(2‐hydroxy‐3‐carboxynaph‐1‐ylazo)‐1,2,4‐triazole ( HL2 ) have been carried out. Their structures were confirmed by elemental analyses, thermal analyses, spectral and magnetic data. The IR and 1H NMR spectra indicated that HL1 and HL2 coordinated to the metal ions as bidentate monobasic ligands via the hydroxyl O and azo N atoms. The UV‐Vis, ESR spectra and magnetic moment data revealed the formation of octahedral complexes [Mn L1 (AcO)(H2O)3] ( 1 ), [Co L1 (AcO)(H2O)3]·H2O ( 2 ), [Mn L2 (AcO)(H2O)3] ( 6 ) and [Co L2 (AcO)(H2O)3] ( 7 ), [Ni L1 (AcO)(H2O)] ( 3 ), [Zn L1 (AcO)(H2O)]·H2O ( 5 ), [Ni L2 (AcO)(H2O)] ( 8 ), [Zn L2 (AcO)(H2O)]·10H2O ( 10 ) have tetrahedral geometry, whereas [Cu L1 (AcO)(H2O)2] ( 4 ) and [Cu L2 (AcO)(H2O)2]·5H2O ( 9 ) have square pyramidal geometry.. The mass spectra of the complexes under EI‐con‐ ditions showed the highest peaks corresponding to their molecular weights, based on the atomic weights of 55Mn, 59Co, 58Ni, 63Cu and 64Zn isotopes; besides, other peaks containing other isotopes distribution of the metal. Kinetic and thermodynamic parameters of the thermal decomposition stages were computed from the thermal data using Coats‐Redfern method. HL2 and complexes 6 – 10 were found to have moderate antimicrobial activities against Staphylococcus aureus (gram positive), Escherichia coli (gram negative) and Salmonella sp bacteria, and antifungal activity against Fusarium oxysporum, Aspergillus niger and Candida albicans. Also, in most cases, metallation increased the activity compared with the free ligand.  相似文献   

19.
New complexes of Co(II), Ni(II), and Cu(II) with 1-(4-hydroxyphenyl)-1H-1,2,4-triazole (L) of the composition ML2(H2O)2(NO3)2 · nH2O (M = Co(II), n = 3; M = Ni(II), n = 0; M = Cu(II), n = 0) were synthesized and studied by photoelectron and IR spectroscopy, magnetochemistry, thermogravimetry, and X-ray powder diffraction analysis. The type of eff(T) relationship suggests that paramagnetic centers in the Co(II) chloride and Cu(II) nitrate and bromide complexes are involved in antiferromagnetic exchange interactions. The exchange energy values were estimated by the molecular field method.  相似文献   

20.
The reactions of [MIII(CN)6]3? (M = Cr or Co) with CuII complexes of a tridentate schiff base [Cu(aemp)Cl] or [Cu(aemp)Ac]2 (Haemp = 2-[(2-amino-ethylimino)-methyl]-phenol) give rise to 1D cyanide-bridged bimetallic coordination polymers [Cu4(aemp)4(H2O)2][Cr(CN)6]Cl (1) and [Cu3(aemp)3(H2O)][Co(CN)6]·2H2O·MeOH (2). In complex 1, the six cyanide ligands of the [Cr(CN)6]3? moiety are involved in bridging, while in complex 2 only five cyanide ligands act as bridges to give a neutral chain. Magnetic studies reveal that complex 1 exhibits intermetallic ferromagnetic coupling, with J = 8.2 cm?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号