首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 815 毫秒
1.
钴离子配位分子印迹聚合物膜渗透特性的研究   总被引:1,自引:0,他引:1  
马向霞  李文友  何锡文  张玉奎 《化学学报》2005,63(18):1681-1685
采用分子印迹技术紫外光引发原位聚合的方法制备了带支撑膜的钴离子配位分子印迹聚合物膜. 用扫描电镜测定了膜的表面形貌. 通过膜渗透实验表明, 在一定浓度钴离子存在下, 印迹膜对模板分子表现出良好的渗透选择性. 分别考察了阳离子和阴离子对印迹膜渗透模板分子的影响. 本工作有助于分子印迹技术应用于传感器技术和连续分离技术的研究.  相似文献   

2.
基于分子印迹技术的丙溴磷压电石英晶体微天平研制   总被引:1,自引:0,他引:1  
介绍了一种用于检测丙溴磷农药的分子印迹压电生物传感器的构建方法。采用沉淀聚合法合成了农药丙溴磷的分子印迹聚合物,将其固定于石英晶体微天平电极表面构建传感器;采用环境扫描电镜以及原子力显微镜对聚合物形貌、传感器电极表面形貌特征进行分析,并利用传感器对丙溴磷农药进行检测分析,其质量浓度在10~1000 ng/mL范围内,传感器频率改变与丙溴磷浓度之间的响应呈线性关系,线性方程为y=0.139ρ+2.26(r=0.9984)。结果表明,构建的分子印迹压电生物传感器能够对农药进行初步检测,具有较高的灵敏性和较好的特异识别能力。  相似文献   

3.
烟酸分子印迹复合膜的制备及其分离性能研究   总被引:1,自引:0,他引:1  
邱增英  钟世安 《化学学报》2010,68(3):246-250
以聚偏氟乙烯微孔滤膜为支撑膜,烟酸为模板分子,用紫外光引发表面修饰聚合制备了微孔滤膜支撑-烟酸分子印迹复合膜.电镜扫描对该印迹复合膜进行了表面形态表征.Scatchard分析表明,在所研究的浓度范围内分子印迹复合膜中存在等价的结合位点,结合位点的平衡离解常数Kd为5.55×10-2mmol·L-1.底物的结合和渗透选择性实验表明,分子印迹复合膜对烟酸有较好的结合性能,结合量是6.10μmol·g-1.与其结构类似的化合物烟酰胺相比,分子印迹复合膜对模板分子展示了更好的选择性及高度的识别能力.  相似文献   

4.
Salicylic acid is a phytohormone, playing crucial roles in signal transduction, crop growth, and development, and defense to environmental challenges. In this study, a highly selective electrochemical sensor was designed and used to determine salicylic acid using molecularly imprinted polymers for recognition. The electrochemical sensor was fabricated via stepwise modification of gold nanoparticle–graphene–chitosan and molecularly imprinted polymers on a glassy carbon electrode. With electrochemical deposition, a gold nanoparticle–graphene–chitosan film was deposited on the glassy carbon electrode and enhanced the sensitivity. Molecularly imprinted polymers with adsorbed template salicylic acid were added to the surface of the modified electrode. Cyclic voltammetry and electrochemical impedance spectroscopy were used to characterize the modified electrodes. Salicylic acid in wheat was quantified by the sensor using the molecularly imprinted polymer/gold nanoparticle–graphene–chitosan/glassy carbon electrode. Concentrations of salicylic acid from 5?×?10?10 to 5?×?10?5?mol?L?1 were determined showing that the developed sensor was suitable for the analysis of food.  相似文献   

5.
A dual responsive molecularly imprinted polymer sensitive to both photonic and magnetic stimuli was successfully prepared for the detection of four sulfonamides in aqueous media. The photoresponsive magnetic molecularly imprinted polymer was prepared by surface imprinting polymerization using superparamagnetic Fe3O4 nanoparticles functionalized with a silica layer as a support, water‐soluble 4‐[(4‐methacryloyloxy)phenylazo]benzenesulfonic acid as the functional monomer, and sulfadiazine as the template. The magnetic molecularly imprinted polymers showed specific affinity to sulfadiazine and its structural analogs in aqueous media. Upon alternate irradiation at 365 and 440 nm, the quantitative bind and release of the four sulfonamides by magnetic molecularly imprinted polymers occurred. Furthermore, the prepared magnetic molecularly imprinted polymers were used as solid‐phase extraction material selectively extracted the four sulfonamides from water samples with good recoveries. Thus, a simple, convenient, and reliable detection method for sulfonamides in the environment based on responsive magnetic molecularly imprinted polymers was successfully established.  相似文献   

6.
Electrochemical synthesis and signal generation dominate among the almost 1200 articles published annually on protein-imprinted polymers. Such polymers can be easily prepared directly on the electrode surface, and the polymer thickness can be precisely adjusted to the size of the target to enable its free exchange. In this architecture, the molecularly imprinted polymer (MIP) layer represents only one ‘separation plate’; thus, the selectivity does not reach the values of ‘bulk’ measurements. The binding of target proteins can be detected straightforwardly by their modulating effect on the diffusional permeability of a redox marker through the thin MIP films. However, this generates an ‘overall apparent’ signal, which may include nonspecific interactions in the polymer layer and at the electrode surface. Certain targets, such as enzymes or redox active proteins, enables a more specific direct quantification of their binding to MIPs by in situ determination of the enzyme activity or direct electron transfer, respectively.  相似文献   

7.
分子印迹电化学传感器的制备及其对啶虫脒的响应特性   总被引:1,自引:0,他引:1  
刘斌  黄咏星  连惠婷  吴红梅 《电化学》2011,17(3):323-328
应用恒电位沉积法制备了以壳聚糖为功能基体,啶虫脒为模板分子、戊二醛为交联剂的印迹膜电极,并构建印迹传感器。借助阳离子指示探针Ru(NH3)6Cl3,研究该印迹传感器的电化学响应特性及其对模板分子啶虫脒的分子识别性能。结果表明,印迹传感器具有良好的印迹效果,相较于结构类似物如吡虫啉等,对啶虫脒有较高的结合速率和特异性识别能力,且在啶虫脒浓度为1.0 × 10-7 ~ 2.0 × 10-5 mol/L范围内呈线性响应,为农药残留物中啶虫脒的选择性分析提供新的思路。  相似文献   

8.
Monodisperse molecularly imprinted polymers for strychnine were prepared by precipitation polymerization and multistep swelling and polymerization, respectively. In precipitation polymerization, methacrylic acid and divinylbenzene were used as a functional monomer and crosslinker, respectively, while in multistep swelling and polymerization, methacrylic acid and ethylene glycol dimethacrylate were used as a functional monomer and crosslinker, respectively. The retention and molecular recognition properties of the molecularly imprinted polymers prepared by both methods for strychnine were evaluated using a mixture of sodium phosphate buffer and acetonitrile as a mobile phase by liquid chromatography. In addition to shape recognition, ionic and hydrophobic interactions could affect the retention of strychnine in low acetonitrile content. Furthermore, molecularly imprinted polymers prepared by both methods could selectively recognize strychnine among solutes tested. The retention factors and imprinting factors of strychnine on the molecularly imprinted polymer prepared by precipitation polymerization were 220 and 58, respectively, using 20 mM sodium phosphate buffer (pH 6.0)/acetonitrile (50:50, v/v) as a mobile phase, and those on the molecularly imprinted polymer prepared by multistep swelling and polymerization were 73 and 4.5. These results indicate that precipitation polymerization is suitable for the preparation of a molecularly imprinted polymer for strychnine. Furthermore, the molecularly imprinted polymer could be successfully applied for selective extraction of strychnine in nux‐vomica extract powder.  相似文献   

9.
A novel nanocomposite of molecularly imprinted polymers and graphene sheets was fabricated and used to obtain a highly conductive acetylene black paste electrode with high conductivity for the detection of bisphenol A. The two‐dimensional structure and the chemical functionality of graphene provide an excellent surface for the enhancement of the sensitivity of the electrochemical sensor and the specificity of molecularly imprinted polymers to improve detection of bisphenol A. The synergistic effect between graphene and molecularly imprinted polymers confers the nanocomposite with superior conductivity, broadened effective surface area and outstanding electrochemical performance. Factors affecting the performance of the imprinted sensor such as molecularly imprinted polymers concentration, foster time and scan rate are discussed. The sensor successfully detects bisphenol A with a wide linear range of 3.21 × 10?10 to 2.8 × 10?1 g/L (R = 0.995) and a detection limit of 9.63 × 10?11g/L. The fabricated sensor also possessed high selectivity and stability and exhibits potential for environmental detection of contaminants and food safety inspection.  相似文献   

10.
A novel magnetic dummy molecularly imprinted polymer based on multiwalled carbon nanotubes was prepared with 2-amino-4-chlorophenol as the dummy template for rapid separation and enrichment of 4-chlorophenol in aqueous samples. The magnetic dummy molecularly imprinted polymer was characterized by infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, and vibrating sample magnetometry. The saturation adsorption capacity of the magnetic dummy molecularly imprinted polymer toward 4-chlorophenol was up to 54.3?mg?g?1 at 298?K, which is higher than for previously reported imprinted polymers. The magnetic dummy molecularly imprinted polymers were coupled with high-performance liquid chromatography to isolate and determine 4-chlorophenol in fish bile and river water with the recoveries from 95.8 to 98.9% and 96.6 to 99.1%, respectively.  相似文献   

11.
A molecularly imprinted polymer based on a ternary deep eutectic solvent comprised of choline chloride/caffeic acid/ethylene glycol was prepared. The caffeic acid in the ternary deep eutectic solvent was used as both a monomer and template. The molecularly imprinted polymer based on the ternary deep eutectic solvent was characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, field‐emission scanning electron microscopy, Brunauer–Emmett–Teller surface area analysis, atomic force microscopy, and elemental analysis. A series of molecularly imprinted polymers based on choline chloride/caffeic acid/ethylene glycol with different molar ratios was prepared and applied to the molecular recognition of polyphenols. A comparison of the recognition ability of molecularly imprinted polymers to polyphenols revealed that the choline chloride/caffeic acid/ethylene glycol (1:0.4:1, molar ratio) molecularly imprinted polymer had the best molecular recognition effect with 132 μg/g of protocatechuic acid, 104 μg/g of catechins, 80 μg/g of epicatechin, and 123 μg/g of caffeic acid in 6 h, as well as good molecular recognition ability for polyphenols from a Radix Asteris sample. These results show that the ternary deep eutectic solvent based molecularly imprinted polymer is a potential medium that can be applied to drug purification, drug delivery, and drug analysis.  相似文献   

12.
Uniform-sized fluorescent molecularly imprinted polymers were prepared by one-step swelling and suspension polymerization, while chlorpyrifos, methacrylic acid, ethylene glycol dimethacrylate, and oil-soluble CdSe/ZnS quantum dots were used as the carrier, template molecule, functional monomer, cross-linker, and fluorophor, respectively. The morphology, adsorption dynamics, binding ability, and selectivity of quantum dot-labeled molecularly imprinted polymers were evaluated. The dosage of quantum dots for labeling the molecularly imprinted polymers was optimized. The results showed that the optimized dose of quantum dots was 200?µL using a concentration of 8.0?µM. The microsphere size was approximately 10?µm with a honeycombed surface. The quantum dot-labeled molecularly imprinted polymers had an even brightness and a high selectivity. In the presence of different concentrations of chlorpyrifos, a decrease in the fluorescence intensity of the quantum dot-labeled molecularly imprinted polymer was clearly identified by flow cytometry. The whole detection process was accomplished within 2?h including pretreatment. This method was used for the determination of chlorpyrifos in tap water samples.  相似文献   

13.
A uniform-sized molecularly imprinted polymer (MIP) for (S)-naproxen selectively modified with hydrophilic external layer has been prepared. First, the molecularly imprinted polymer for (S)-naproxen was prepared using 4-vinylpyridine and ethylene glycol dimethacrylate (EDMA) as a functional monomer and cross-linker, respectively, by a multi-step swelling and thermal polymerization method. Next, a 1:1 mixture of glycerol monomethacrylate (GMMA) and glycerol dimethacrylate (GDMA) was used for hydrophilic surface modification, and it was added directly to the molecularly imprinted polymer for (S)-naproxen 4 h after the start of molecular imprinting. The retention factors of all solutes tested were decreased with the surface modified molecularly imprinted polymer, compared with the unmodified molecularly imprinted polymer. However, chiral recognition of racemic naproxen was attained with the surface modified molecularly imprinted polymer as well as the unmodified molecularly imprinted polymer. Further, bovine serum albumin was completely recovered from the surface modified molecularly imprinted polymer. These results revealed that the chiral recognition sites of (S)-naproxen remained unchanged with hydrophilic surface modification, and that the molecularly imprinted polymer for (S)-naproxen was selectively modified with hydrophilic external layer. Preliminary results reveal that the surface modified molecularly imprinted polymer could be applicable to direct serum injection assays of (S)-naproxen.  相似文献   

14.
Estrone molecularly imprinted polymers were synthesized through the self‐polymerization of dopamine on the surface of silica gels, which had the characteristics of mild polymerization conditions, simple reaction procedure and good specific recognition ability for estrone. The estrone molecularly imprinted polymers were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, elemental analysis and nitrogen adsorption–desorption tests. The characterization confirmed that the imprinted polymers were successfully grafted on the surface of silica gels. Through investigating the adsorption performance, the prepared estrone molecularly imprinted polymers exhibited high adsorption capacity, fast mass transfer, as well as excellent selectivity toward estrone. The estrone molecularly imprinted polymers as the solid‐phase extraction adsorbent coupled with high‐performance liquid chromatography was developed to determine estrone from the milk samples. The developed estrone molecularly imprinted polymer solid‐phase extraction with high‐performance liquid chromatography method exhibited satisfactory specificity, precision, accuracy and good linearity relationship in the range of 0.2–20 μg/mL. The developed method is simple, fast, effective and high specificity method and it provides a new method to detect the residues of estrone in animal foods.  相似文献   

15.
We present a novel electrochemical sensor based on an electrode modified with molecularly imprinted polymers for the detection of chlorpyrifos. The modified electrode was constructed by the synthesis of molecularly imprinted polymers by a precipitation method then coated on a glassy carbon electrode. The surface morphology of the modified electrode was characterized by using field‐emission scanning electron microscopy and transmission electron microscopy. The performance of the imprinted sensor was thoroughly investigated by using cyclic voltammetry and differential pulse voltammetry. The imprinted electrochemical sensor displayed high repeatability, stability, and selectivity towards the template molecules. Under the optimal experimental conditions, the peak current response of the imprinted electrochemical sensor was linearly related to the concentration of chlorpyrifos over the range 1 × 10−10–1 × 10−5 mol/L with a limit of detection of 4.08 × 10−9 mol/L (signal‐to‐noise ratio = 3). Furthermore, the proposed molecularly imprinted electrochemical sensor was applied to the determination of chlorpyrifos in the complicated matrixes of real samples with satisfactory results. Therefore, the molecularly imprinted polymers based electrochemical sensor might provide a highly selective, rapid, and cost‐effective method for chlorpyrifos determination and related analysis.  相似文献   

16.
Cao L  Zhou XC  Li SF 《The Analyst》2001,126(2):184-188
We report a novel quartz crystal microbalance sensor that provides enantioselectivity to dansylphenylalanine enantiomers by using a molecularly imprinted polymer film as a recognition element. The polymeric recognition thin film, imprinted with chiral dansyl-L-phenylalanine, was immobilised on a gold electrode modified with a photoactive precursor monolayer via a self-assembly process using photopolymerization. The fabricated sensor was able to discriminate between L- and D-dansylphenylalanine enantiomers in solution owing to the enantioselectivity of the imprinted sites. The enantiomeric composition of L- and D-enantiomeric mixtures could be quantitatively determined by the fabricated sensor. The detection limit is 5 micrograms mL-1 with a response range of 5-500 micrograms mL-1 at pH 10.0. The influence of the template concentration on the sensitivity and selectivity of the synthesised polymer membranes was investigated and optimised. The surface characteristics of the polymer coating were studied by varying the pH value of the buffer solution, and a convenient regeneration process was proposed to increase the reproducibility and reusability of the sensor by flushing with pH 2.0 buffer. The selectivity and recognition mechanism of the imprinted polymer film were studied with compounds that are structurally related to the template. The method presented in this work provides a novel means of preparing highly selective and sensitive chemical sensors via self-assembly and molecularly imprinting techniques.  相似文献   

17.
The use of molecularly imprinted polymers polymerized in a capillary for the separation of amino acid enantiomers by electrochromatography is described. The substrate-selective polymers were prepared by using l-phenylalanine anilide as print molecule and methacrylic acid as the functional monomer. The treatment of the inside surface of the capillary, the composition of the polymer and the electrochromatographic running conditions were investigated. This preliminary report demonstrated a novel and simple method for capillary electrochromatographic separations of amino acid enantiomers using molecularly imprinted polymers. Received: 9 April 1996 / Revised: 8 August 1996 / Accepted: 8 August 1996  相似文献   

18.
The present study describes the synthesis and preliminary testing of molecularly imprinted polymers (MIPs) as scavenger resins for removal of the genotoxic impurities (GTI) benzhydrol from active pharmaceutical ingredients (API). A new molecularly imprinted polymer was synthesized using benzhydrol (template molecule), methacrylic acid (functional monomer), ethylene glycol dimethacrylate (cross‐linker), 2,2′‐azobisisobutironitril (intiator) and chloroform (porogenic solvent). To compare the performance of this polymer, a control polymer or non‐imprinted polymer (NIP) was prepared under the same conditions without the use of template molecule. The synthesized polymers were characterized by FT‐IR spectroscopy. Selectivity of the molecularly imprinted polymer for absorption benzhydrol impurities through adsorption experiments reviews and the results were compared with the adsorption of impurities by NIP. Various parameters were optimized such as time, pH, type of eluent for elution of impurities from polymer, concentration of sample and saturation of polymer. The proposed method was applied for removal of benzhydrol from Diphenhydramine hydrochloride syrup and passing it through the MIPs led to the quantitative removal of benzhydrol.  相似文献   

19.
Wang Z  Li H  Chen J  Xue Z  Wu B  Lu X 《Talanta》2011,85(3):1672-1679
A novel electrochemical sensor based on molecularly imprinted polymer film has been developed for aspirin detection. The sensitive film was prepared by co-polymerization of p-aminothiophenol (p-ATP) and HAuCl(4) on the Au electrode surface. First, p-ATP was self-assembled on the Au electrode surface by the formation of Au-S bonds. Then, the acetylsalicylic acid (ASA) template was assembled onto the monolayer of p-ATP through the hydrogen-bonding interaction between amino group (p-ATP) and oxygen (ASA). Finally, a conductive hybrid membrane was fabricated at the surface of Au electrode by the co-polymerization in the mixing solution containing additional p-ATP, HAuCl(4) and ASA template. Meanwhile, the ASA was spontaneously imprinted into the poly-aminothiophenol gold nanoparticles (PATP-AuNPs) complex film. The amount of imprinted sites at the PATP-AuNPs film significantly increases due to the additional replenishment of ASA templates. With the significant increasing of imprinted sites and doped gold nanoparticles, the sensitivity of the molecular imprinted polymer (MIP) electrode gradually increased. The molecularly imprinted sensor was characterized by electrochemical impedance spectroscopy (EIS), differential pulse voltammetry (DPV), and cyclic voltammetry (CV). The linear relationships between current and logarithmic concentration were obtained in the range from 1 nmol L(-1) to 0.1 μmol L(-1) and 0.7 μmol L(-1) to 0.1 mmol L(-1). The detection limit of 0.3 nmol L(-1) was achieved. This molecularly imprinted sensor for the determination of ASA has high sensitivity, good selectivity and reproducibility, with the testing in some biological fluids also has good selectivity and recovery.  相似文献   

20.
Therapeutic drug monitoring of captopril, which is a commonly used antihypertensive agent in clinical practice, is necessary. However, matrix effect-induced pretreatment is the bottleneck for determination. Metal-mediated molecularly imprinted polymers, an essential branch of molecularly imprinted polymers with better specificity and selectivity, have been used to separate/enrich analytes from complex matrices. In this work, Cu2+ was introduced to dynamically establish the binding sites of metal-mediated molecularly imprinted polymer towards captopril. All evidence demonstrated that the metal-mediated molecularly imprinted polymer based on Cu2+ coordination obtained a higher adsorption capacity (81.23 mg/g), faster adsorption rate (adsorption equilibrium within 50 min), and better selectivity (with the unrecognized analog). Subsequently, the Cu2+-mediated molecularly imprinted polymer was used as dispersive molecularly imprinted solid-phase extraction to successfully establish an analytical platform for the determination of trace captopril in rat plasma. The enrichment factor was up to 20, the detection limit was as low as 0.16 μg/ml, and the average recovery was in the range of 87.51%–98.28% with a relative standard deviation of less than 3.29%. This study provides a promising reference for the preparation of selective adsorbents to improve pretreatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号