首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The galvanomagnetic and magnetic properties of EuB6 single crystal have been measured over wide temperature (1.8–300 K) and magnetic-field (up to 70 kOe) ranges, and the parameters of charge carriers and the characteristics of the magnetic subsystem are estimated in the paramagnetic and ferromagnetic (T < T C ≈ 13.9 K) phases of this compound with strong electron correlations. In the temperature range T < T* ≈ 80 K, a magnetoresistance hysteresis Δρ(H)/ρ(0) is detected; it reaches a maximum amplitude of about 5% at T ≈ 12 K. The anomalies of charge transport observed in the temperature range T C < T < T* are shown to be related to the magnetic scattering of charge carriers (m eff = (15–30)m 0, where m 0 is the free-electron mass) that results from a short-range magnetic order appearing upon the formation of ferromagnetic nanoregions (ferrons).  相似文献   

2.
The spins of Ru5+ ions in Sr2YRuO6 form a face-centered cubic lattice with antiferromagnetic nearest neighbor interaction J≈25 meV. The antiferromagnetic structure of the first type experimentally observed below the Néel temperature T N =26 K corresponds to four frustrated spins of 12 nearest neighbors. In the Heisenberg model in the spin-wave approximation, the frustrations already cause instability of the antiferromagnetic state at T=0 K. This state is stabilized by weak anisotropy D or exchange interaction I with the next-nearest neighbors. Low D/JI/J~10?3 values correspond to the experimental T N and sublattice magnetic moment values.  相似文献   

3.
Complex magnetic, resistive, and dielectric studies of Pr1–xCaxMnO3 (х = 0.15–0.30) manganites reveal multiferroic properties at T?TC in these solid solutions. States with local magnetization in the form of ferromagnetic clusters (nucleation temperature T* ≈ 700 K) and high dielectric constants coexist in the temperature window TCTT*. There is a correlation between the temperature dependences of specific resistance and specific magnetization.  相似文献   

4.
The magnetotransport and magnetic properties of La 1 ? x Ca x MnO3 polycrystalline samples (x = 0–0.3) annealed under vacuum and in the oxygen environment are investigated in the temperature range from 77 to 400 K. The magnetic studies of lightly doped manganites reveal persistence of short-range magnetic order up to a temperature T* ≈ 300 K, which is about 2–3 times higher than their Curie temperature T C. The temperature dependence of the electrical resistivity measured from T* down to nearly TT C is fitted by the relation logρ ~ T ?1/2, which is characteristic of granular metals with electrons tunneling among nanoclusters of magnetic metals embedded in a dielectric host. The magnetoresistance of polycrystalline samples annealed in the oxygen environment has been observed to increase. The electrical, magnetic, and magnetotransport properties of the manganites can be accounted for by the formation of magnetic nanoclusters below T*, tunneling (or hopping) of carriers among the nanoclusters, variation in the magnetic cluster size, and tunneling barrier thickness with variations in temperature and magnetic field strength, as well as by the effect of annealing in different media on the cluster properties.  相似文献   

5.
The temperature dependence of the ESR linewidth in La1 ? x Ca x MnO3 single crystals with various dopant concentrations (x = 0.18, 0.2, 0.22, 0.25, and 0.3) has been studied. An abrupt decrease in the ESR linewidth has been observed in the samples with a dopant concentration of x = 0.18 and 0.2 near the respective temperatures T OO′ ≈ 260 and 240 K of the orthorhombic to pseudocubic structural phase transition. The abrupt decrease in the ESR linewidth by approximately 180 Oe has been also observed in the whole temperature range when the concentration is increased from x = 0.2 to x = 0.22. The formula for the fourth moment of the ESR line has been derived including both crystal fields and isotropic exchange interactions and taking into account the difference between the exchange coupling of a spin to its nearest in-plane and out-of-plane neighbors. The formula has been used to estimate the parameter D of the crystalline field on Mn3+ ions.  相似文献   

6.
Two-dimensional systems of C20 fullerenes connected to each other by strong covalent bonds have been investigated. Several isomers differing in the type of intercluster bonds have been revealed. The lifetimes τ of the (C20) M × M complexes with M = 2 and 3 at T = 1800–3300 K have been directly calculated using the molecular dynamics method. It has been shown that these complexes lose their periodic cluster structure due usually to the coalescence of two or several neighboring C20 fullerenes. The activation energy of this process determined by analyzing the τ(T) dependence appears to be E a ≈ 2.5 eV in agreement with the calculations of the heights of the potential barriers preventing the coalescence. At high temperatures T > 2400 K, the decay of C20 fullerenes entering into the complex is possible.  相似文献   

7.
The temperature dependence of the excess conductivity Δσ for Δσ = A(1 ? T/T*)exp(Δ*/T) (YBCO) epitaxial films is analyzed. The excess conductivity is determined from the difference between the normal resistance extrapolated to the low-temperature range and the measured resistance. It is demonstrated that the temperature dependence of the excess conductivity is adequately described by the relationship Δσ = A(1 ? T/T*)exp(Δ*/T). The pseudogap width and its temperature dependence are calculated under the assumption that the temperature behavior of the excess conductivity is associated with the formation of the pseudogap at temperatures well above the critical temperature T c of superconductivity. The results obtained are compared with the available experimental and theoretical data. The crossover to fluctuation conductivity near the critical temperature T c is discussed.  相似文献   

8.
Results of an experimental study of MnS, FeS, and Fe x Mn1?x S single crystals are presented. The phase composition, the lattice parameters, and the state of paramagnetic ions in Fe x Mn1?x S have been determined by x-ray diffraction analysis and Mössbauer spectroscopy. A sequence of transitions have been found in iron manganese sulfide with x = 0.29 at temperatures T 1 ≈ 25–50 K, T 2 ≈ 125 K, and T 3 ≈ 190 K with a change in kinetic properties and the formation of a metallic state at low temperatures T ≈ 2 K. The possibility of a Mott-Hubbard transition in Fe x Mn1?x S sulfides with variation of the composition and the temperature is discussed.  相似文献   

9.
The effect of pressure on the conduction of the NbS3 quasi-one-dimensional conductor is studied. A pressure-induced insulator-metal transition is observed. The transition is accompanied by an increase in conductivity by six orders of magnitude at room temperature. Under pressures of 3–4 GPa, an additional phase transition appears in the temperature dependences of resistance. This transition manifests itself in an increase in the local conduction activation energy. The quantity dln(R)/d(1/T) reaches its maximum under pressures of 4–5 GPa, and the temperature position of the maximum of dln(R)/d(1/T) depends on the pressure as T* ≈ 7.5P + 202 K.  相似文献   

10.
The effect of the working gas pressure (P ≈ 1.33–0.09 Pa) and the substrate temperature (Ts ≈ 77–550 K) on the texture and the microstructure of nickel films deposited by magnetron sputtering onto SiO2/Si substrates is studied. Ni(200) films with a transition type of microstructure are shown to form at growth parameters P ≈ 0.13–0.09 Pa and Ts ≈ 300–550 K, which ensure a high migration ability of nickel adatoms on a substrate. This transition type is characterized by a change of the film structure from quasi-homogeneous to quasi-columnar when a film reaches a critical thickness. Ni(111) films with a columnar microstructure and high porosity form at a low migration ability, which takes place at P ≈ 1.33–0.3 Pa or upon cooling a substrate to Ts ≈ 77 K.  相似文献   

11.
Al2O3 films 150 Å thick are deposited on silicon by the ALD technique, and their x-ray (XPS) and ultraviolet (UPS) photoelectron spectra of the valence band are investigated. The electronic band structure of corundum (α-Al2O3) is calculated by the ab initio density functional method and compared with experimental results. The α-Al2O3 valence band consists of two subbands separated with an ionic gap. The lower band is mainly formed by oxygen 2s states. The upper band is formed by oxygen 2p states with a contribution of aluminum 3s and 3p states. A strong anisotropy of the effective mass is observed for holes: m h * ≈ 6.3m 0 and m h * ≈ 0.36m 0. The effective electron mass is independent of the direction m e * m e * ≈ 0.4m 0.  相似文献   

12.
We have studied the behavior of the thermal expansion coefficient α(T) (in a zero magnetic field and at H≈4 T), the heat capacity C(T), and the thermal conductivity κ(T) of magnesium boride (MgB2) in the vicinity of Tc and at lower temperatures. It was established that MgB2, like oxide-based high-temperature superconductors, exhibits a negative thermal expansion coefficient at low temperatures. The anomaly of α(T) in MgB2 is significantly affected by the magnetic field. It was established that, in addition to the well-known superconducting transition at Tc≈40 K, MgB2 exhibits an anomalous behavior of both heat capacity and thermal conductivity in the region of T≈10–12 K. The anomalies of C(T) and κ(T) take place in the same temperature interval where the thermal expansion coefficient of MgB2 becomes negative. The low-temperature anomalies are related to the presence of a second group of charge carriers in MgB2 and to an increase in the density of the Bose condensate corresponding to these carriers at Tc2≈10–12 K.  相似文献   

13.
The static magnetic susceptibility (χ) of own-made HCl-doped polyaniline pellets is investigated experimentally over the full range of the protonation level Y and in the temperature (T) range 10–300 K.The obtained results suggest that χ and the electrical conductivity σ – which is known from previous work – are interrelated.Namely, there is a weakly Y dependent crossover temperature T * where both χ and σ undergo notable changes.In χ, this refers to a simultaneous enhancement (reduction) of the Pauli-type susceptibility χ P and reduction (enhancement) of the Curie constant C at T = T * when T increases (decreases).Below T < T *, where thermal effects are weak to moderate, a steep increase of χ P(Y) around Y = 0.3 occurs together with a drop of C(Y).The above findings are consistent with a picture in which, at T *, spins that disappear from C reappear in χ P, and vice versa.This model is used to address the longitudinal and transversal electron localisation lengths as functions of Y, the former being estimated to take values in the range 7–8 Åand the latter in the range 1–2 Å.  相似文献   

14.
The formation temperature (T*~ 135 K) is determined in the Shubin-Vonsovski approximation for local electron pairs in the CuO2 planes of YBa2Cu3O7 crystal. This estimate is used to obtain the Coulomb pseudopotential µ*≈?0.15. In the presence of strong electron-phonon coupling (λ ~0.5) and electron correlation in the electron pairing, the estimate of critical temperature T c ≈99 K agrees, by the order of magnitude, with its experimental value. The calculated ratio 2Δ/kT c ≈4.13 confirms the presence of strong electron pairing.  相似文献   

15.
We report a quantitative investigation of the magnetic field-temperature phase diagram by taking into account a simple phenomenological model arising out of the interplay of kinetic arrest and thermodynamic transitions in a magnetic glass Pr0.5Ca0.5Mn0.975Al0.025O3, through magnetization measurements. Such studies are necessary as kinetic arrest plays an important role in the formation of “magnetic glasses”, which has been observed in systems undergoing first order magnetic phase transitions. It has been shown that disorder in a system results in the formation kinetic arrest (H K ,T K ) band, like supercooling (H *,T *) and superheating (H **,T **) band. Quantitative proofs are given to show that (H K ,T K ) band is anticorrelated with (H *,T *) and (H **,T **) bands, while the later two are correlated among themselves. Analysis of time dependence of magnetization at different temperatures is carried out to establish the fact that the kinetic arrested state is different from the supercooled state.  相似文献   

16.
High-frequency (HF) conductivity in systems with a dense (with a density of n = 3 × 1011 cm?2) array of self-organized Ge0.7Si0.3 quantum dots in silicon with different boron concentrations nB is determined by acoustic methods. The measurements of the absorption coefficient and the velocity of surface acoustic waves (SAWs) with frequencies of 30–300 MHz that interact with holes localized in quantum dots are carried out in magnetic fields of up to 18 T in the temperature interval from 1 to 20 K. Using one of the samples (nB = 8.2 × 1011 cm?2), it is shown that, at temperatures T ≤ 4 K, the HF conductivity is realized by the hopping of holes between the states localized in different quantum dots and can be explained within a two-site model in the case of
, where ω is the SAW frequency and τ0 is the relaxation time of the populations of the sites (quantum dots). For T > 7 K, the HF conductivity has an activation character associated with the diffusion over the states at the mobility threshold. In the interval 4 K < T < 7 K, the HF conductivity is determined by a combination of the hopping and activation mechanisms. The contributions of these mechanisms are distinguished; it is found that the temperature dependence of the hopping HF conductivity approaches saturation at T* ≈ 4.5 K, which points to a τ0 ≤ 1. A value of τ0(T*) ≈ 5 × 10?9 s is determined from the condition ωτ0(T*) ≈ 1.
  相似文献   

17.
Precision measurements of transport and magnetic parameters of high-quality CeB6 single crystals are performed in the temperature range 1.8—300 K. It is shown that their resistivity in the temperature interval 5 K < T < T* ≈ 80 K obeys not a logarithmic law, which is typical of the Kondo mechanism of charge carrier scattering, but the law ρ ∝ T ?1/η corresponding to the weak localization regime with a critical index 1/η = 0.39 ± 0.02. Instead of the Curie-Weiss dependences, the asymptotic form χ(T) ∝ T ?0.8 is obtained for magnetic susceptibility of CeB6 in a temperature range of 15–300 K. Analysis of the field dependences of magnetization, magnetoresistance, and the Hall coefficient in the paramagnetic and magnetically ordered phases of CeB6 and comparison with the results of measurements of Seebeck coefficient, the inelastic neutron scattering coefficient, and EPR spectroscopy lead to the conclusion that the Kondo lattice model and skew scattering model cannot be used for describing the transport and thermodynamic parameters of this compound with strong electron correlations. On the basis of detailed analysis of experimental data, an alternative approach to interpreting the properties of CeB6 is proposed using (1) the assumption concerning itinerant paramagnetism and substantial renormalization of the density of electron states upon cooling in the vicinity of the Fermi energy, which is associated with the formation of heavy fermions (spin-polaron states) in the metallic CeB6 matrix in the vicinity of Ce sites; (2) the formation of ferromagnetic nanosize regions from spin polarons at 3.3 K < T < 7 K and a transition to a state with a spin density wave (SDW) at T Q ≈ 3.3 K; and (3) realization of a complex magnetic phase H-T diagram of CeB6, which is associated with an increase in the SDW amplitude and competition between the SDW and antiferromagnetism of localized magnetic moments of cerium ions.  相似文献   

18.
The characteristics determining different contributions to the magnetic susceptibility at T > T C (Pauli susceptibility, coherence length at T = 0, and Curie constant) as functions of the degree of structural disorder have been analyzed for high-temperature superconducting YBa2Cu3O y samples ( y ≈ 6.92, T C ≈ 92 K) with micrometer and submicron average grain sizes D av. It is shown that the decrease in these characteristics, which is observed in fine-grained samples with a decrease in D av, occurs in various ways, depending on the number and type of oxygen vacancy ordering in chain planes.  相似文献   

19.
A crystal of the Cs5H3(SO4)4 · xH2O (x ≈ 0.5) (PCHS) compound, which belongs to the family of proton conductors with a complex system of hydrogen bonds, is investigated by 2H NMR spectroscopy. The temperature and orientation dependences of the 2H NMR spectra are measured and analyzed. It is established that, upon transition to the glassy phase at the temperature T g = 260 K, the parameters characterizing the proton exchange between positions in hydrogen bonds remain unchanged to within the limits of experimental error. The protons in the two-dimensional network of hydrogen bonds in the (001) plane are dynamically disordered over possible positions down to temperatures considerably lower than the glass transition point T g . However, water molecules are fixed at particular structural positions in the phase transition range. In PCHS crystals with a nonstoichiometric water content, this circumstance can be responsible for the frustration that leads to the formation of the glassy state.  相似文献   

20.
The local structure of DyNiO3 nickelate at both sides of the insulator (T < T im) ? metal (T > T im) phase transition was studied by probe 57Fe Mössbauer spectroscopy. The character of change in the hyperfine parameters of probe iron atoms specifically near the phase-transition temperature (TT im) was analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号