首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
As gas flooding becomes a more viable means of enhanced oil recovery, it is important to identify and understand the pore-scale flow mechanisms, both for the development of improved gas flooding applications and for the predicting phase mobilisation under secondary and tertiary gas flooding. The purpose of this study was to visually investigate the pore-level mechanisms of oil recovery by near-miscible secondary and tertiary gas floods. High-pressure glass micromodels and model fluids representing a near-miscible fluid system were used for the flow experiments. A new pore-scale recovery mechanism was identified which significantly contributed to oil recovery through enhanced flow and cross-flow between the bypassed pores and the injected gas. This mechanism is strongly related to a very low gas/oil interfacial tension (IFT), perfect wetting conditions and simultaneous flow of gas and oil in the same pore, all of which occur as the gas/oil critical point is approached. The results of this study helps us to better understand the pore-scale mechanisms of oil recovery in very low-IFT (near-miscible) systems. In particular we show that in near-miscible gas floods, behind the main gas front, the recovery of the oil continues by cross-flow from the bypassed pores into the main flow stream and as a result almost all of the oil, which has been contacted by the gas, could be recovered. Our observations in high-pressure micromodel experiments have demonstrated that this mechanism can only occur in near-miscible processes (as opposed to immiscible and completely miscible processes), which makes oil displacement by near-miscible gas floods a very effective process.  相似文献   

2.
天然气驱长岩心室内实验研究   总被引:1,自引:0,他引:1  
低渗透油藏注水开发效果差、采收率低,而采用气驱技术是动用此类难采储量的有效方法之一。本文利用长岩心实验模型,进行了物理模拟研究,得到了该油藏在纯气驱、纯水驱、完全水驱后气水交替驱、原始状态下气水交替驱和油藏目前注水倍数下气水交替驱等方式下的采收率和压力等变化情况,为油藏选择合理的开采方式提供了依据,并且为进一步的数值模拟工作提供了基础数据。  相似文献   

3.
A model is presented which demonstrates that the process of flooding and flow reversal can be explained on the basis of a film mechanism. The model predicts well the gas flow rate at which flooding and flow reversal begins and ends for a given liquid flow rate and the presence of a hysteresis loop between flooding and flow reversal. The predictions of the theory are in satisfactory agreement with experimental flooding data.  相似文献   

4.
Carbon dioxide (CO2) injection is a well-established method for increasing recovery from oil reservoirs. However, poor sweep efficiency has been reported in many CO2 injection projects due to the high mobility contrast between CO2 and oil and water. Various injection strategies including gravity stable, WAG and SWAG have been suggested and, to some extent, applied in the field to alleviate this problem. An alternative injection strategy is carbonated water injection (CWI). In CWI, CO2 is delivered to a much larger part of the reservoir compared to direct CO2 injection due to a much improved sweep efficiency. In CWI, CO2 is used efficiently and much less CO2 is required compared to conventional CO2 flooding, and hence the process is particularly attractive for reservoirs with limited access to large quantities of CO2 (offshore reservoirs or reservoirs far away from inexpensive natural CO2 resources). This article describes the results of a pore-scale study of the process of CWI by performing high-pressure visualisation flow experiments. The experimental results show that CWI, compared to unadulterated (conventional) water injection, improves oil recovery as both a secondary (before water flooding) and a tertiary (after water flooding) recovery method. The mechanisms of oil recovery by CWI include oil swelling, coalescence of the isolated oil ganglia and flow diversion due to flow restriction in some of the pores as a result of oil swelling and the resultant fluid redistribution. In this article the potential benefit of a subsequent depressurisation period on oil recovery after the CWI period is also investigated.  相似文献   

5.
6.
Adding surfactant into the displacing aqueous phase during surfactant-enhanced aquifer remediation of NAPL contamination and in chemical flooding oil recovery significantly changes interfacial tension (IFT) (σ) on water–oil interfaces within porous media. The change in IFT may have a large impact on relative permeability for the two-phase flow system. In most subsurface flow investigations, however, the influence of IFT on relative permeability has been ignored. In this article, we present an experimental study of two-phase relative- permeability behavior in the low and more realistic ranges of IFT for water–oil systems. The experimental work overcomes the limitations of the existing laboratory measurements of relative permeability (which are applicable only for high ranges of IFT (e.g., σ > 10−2 mN/m). In particular, we have (1) developed an improved steady-state method of measuring complete water–oil relative permeability curves; (2) proven that a certain critical range of IFT exists such that IFT has little impact on relative permeability for σ greater than this range, while within the range, relative permeabilities to both water and oil phases will increase with decreasing IFT; and (3) shown that a functional correlation exists between water–oil two-phase relative permeability and IFT. In addition, this work presents such correlation formula between water–oil two-phase relative permeability and IFT. The experimental results and proposed conceptual models will be useful for quantitative studies of surfactant-enhanced aquifer remediation and chemical flooding operations in reservoirs.  相似文献   

7.
Liu  Zheyu  Cheng  Hongjie  Li  Yanyue  Li  Yiqiang  Chen  Xin  Zhuang  Yongtao 《Transport in Porous Media》2019,126(2):317-335

Surfactant/polymer (SP) floods have significant potentials to recover remaining oil after water flooding. Their efficiency can be maximized by fully utilizing synergistic effect of polymer and surfactant. Various components adsorbed on the rock matrix due to chromatographic separation can significantly weaken the synergistic effect. Due to scale and dimensional problems, it is hard to investigate chromatographic separation among various components using one-dimensional natural cores. This study compared the adsorption difference between artificial and natural cores and developed a three-dimensional artificial core model of a 1/4 5-spot configuration to simulate oil recovery in multilayered reservoirs with high, middle and low permeability for each layer. Sampling wells were established to monitor pressures, and effluent fluids were acquired to measure interfacial tension (IFT) and viscosity. Then, distances of synergy of polymer and surfactant in three layers were evaluated. Meanwhile, electrodes were set in the model to measure oil saturation variation with resistance changes at different locations. Through comparison with IFT values, the contribution of improved swept volume and oil displacement efficiency to oil recovery during SP flooding could be known. Results showed that injected 0.65 PV of SP could improve oil recovery by 21.56% when water cut reached 95% after water flooding. The retention ratio of polymer viscosity was kept 55.3% at the outlet, but IFT was only 2 mN/m within the 3/10 injector–producer spacing during SP injection. Although subsequent water flooding could result in surfactant desorption and the IFT became 10?2?mN/m within the 3/10 injector–producer spacing, the IFT turned to 2?mN/m at the half of the model. The enhanced displacement efficiency by reducing IFT only worked within three-tenth location of the model in the high permeability layer, while the enlarged swept volume contributed much in the other areas.

  相似文献   

8.
Chemical flooding in the petroleum industry has a larger scale of oil recovery efficiency than water flooding. On the other hand, it is far more technical, costly, and risky. Numerical reservoir simulation can be employed to conduct mechanism study, feasibility evaluation, pilot plan optimization, and performance prediction for chemical flooding to improve recovery efficiency and reduce operational costs. In this article, we study numerical simulation of chemical flooding such as alkaline, surfactant, polymer, and foam (ASP+foam) flooding. The main displacement mechanisms in this type of flooding are interfacial tension lowering, capillary desaturation, chemical synergetic effects, and mobility control. The model of chemical flooding involves such physicochemical phenomena as dispersion, diffusion, adsorption, chemical reactions, and in situ generation of surfactant from acidic crude oil. The numerical simulator is based on a sequential solution approach that solves both pressure and compositions implicitly, and is applied to three experiments, a chemical flow without mass transfer between phases, a laboratory sandstone core, and an ASP+foam displacement problem with mass transfer, and to a real oilfield. A comparison with UTCHEM is also performed. These applications and comparison indicate that this numerical simulator is practical, efficient, and accurate for simulating complex chemical flooding processes.   相似文献   

9.
A fundamental study of microscopic mechanisms and pore-level phenomena in the Microbial Improved Oil Recovery method has been investigated. Understanding active mechanisms to increase oil recovery is the key to predict and plan MIOR projects successfully. This article presents the results of visualization experiments carried out in a transparent pore network model. In order to study the pore scale behavior of bacteria, dodecane and an alkane oxidizing bacterium, Rhodococcus sp. 094, suspended in brine, are examined for evaluating the performance of bacterial flooding in the glass micromodel. The observations show the effects of bacteria on remaining oil saturation, allowing us to get better insight on the mechanisms. Bacterial mass composed of bacteria and bioproducts growth in the fluid interfaces and pore walls have been recorded and are presented. No gas is observed throughout any of the experiments. The biomass blocks some pores and pore-throats, and thereby changing the flow pattern. As a consequent, the flow pattern change together with the previously proposed mechanisms, including the interfacial tension reduction and wettability changes are recognized as active mechanisms in the MIOR process.  相似文献   

10.
Many heavy oil reservoirs contain discontinuous shales which act as barriers or baffles to flow. However, there is a lack of fundamental understanding about how the shale geometrical characteristics affect the reservoir performance, especially during polymer flooding of heavy oils. In this study, a series of polymer injection processes have been performed on five-spot glass micromodels with different shale geometrical characteristics that are initially saturated with the heavy oil. The available geological characteristics from one of the Iranian oilfields were considered for the construction of the flow patterns by using a controlled-laser technology. Oil recoveries as a function of pore volumes of injected fluid were determined from analysis of continuously recorded images during the experiments. We observed a clear bypassing of displacing fluid which results in premature breakthrough of injected fluid due to the shale streaks. Moreover, the results showed a decrease of oil recovery when shales’ orientation, length, spacing, distance of the shale from production well, and density of shales increased. In contrast, an increase of shale discontinuity or distance of the shale streak from the injection well increased oil recovery. The obtained experimental data have also been used for developing and validating a numerical model where good matching performance has been observed between our experimental observations and simulation results. Finally, the role of connate water saturation during polymer flooding in systems containing flow barriers has been illustrated using pore level visualizations. The microscopic observations confirmed that besides the effect of shale streaks as heterogeneity in porous medium, when connate water is present, the trapped water demonstrates another source of disturbance and causes additional perturbations to the displacement interface leading to more irregular fingering patterns especially behind the shale streaks and also causes a reduction of ultimate oil recovery. This study reveals the application of glass micromodel experiments for studying the effects of barriers on oil recovery and flow patterns during EOR processes and also may provide a set of benchmark data for recovery of oil by immiscible polymer flood around discontinuous shales.  相似文献   

11.
Chemical flooding is one of the effective technologies to increase oil recovery of petroleum reservoirs after water flooding. Above the scale of representative elementary volume (REV), phenomenological modeling and numerical simulations of chemical flooding have been reported in literatures, but the studies alike are rarely conducted at the pore-scale, at which the effects of physicochemical hydrodynamics are hardly resolved either by experimental observations or by traditional continuum-based simulations. In this paper, dissipative particle dynamics (DPD), one of mesoscopic fluid particle methods, is introduced to simulate the pore-scale flow in chemical flooding processes. The theoretical background, mathematical formulation and numerical approach of DPD are presented. The plane Poiseuille flow is used to illustrate the accuracy of the DPD simulation, and then the processes of polymer flooding through an oil-wet throat and a water-wet throat are studies, respectively. The selected parameters of those simulations are given in details. These preliminary results show the potential of this novel method for modeling the physicochemical hydrodynamics at the pore scale in the area of chemical enhanced oil recovery.  相似文献   

12.
In spite of the role of alkali in enhancing oil recovery (EOR), the formation of precipitation during alkaline-surfactant-polymer (ASP) flooding can severely do harm to the stratum of oil reservoirs, which has been observed in situ tests of oil fields such as scale deposits found in oil stratum and at the bottom of oil wells. On the other hand, remarkable variation of stratum parameters, e.g., pore radius, porosity, and permeability due to scale formation consider-ably affects seepage flow and alkaline flooding process in return. The objective of this study is to firstly examine these mutual influential phenomena and corresponding mecha-nisms along with EOR during alkaline flooding when the effects of precipitation are no longer negligible. The chem-ical kinetic theory is applied for the specific fundamental reactions to describe the process of rock dissolution in silica-based reservoirs. The solubility product principle is used to analyze the mechanism of alkali scale formation in flooding. Then a 3D alkaline flooding coupling model accounting for the variation of porosity and permeability is established to quantitatively estimate the impact of alkali scales on reser-voir stratum. The reliability of the present model is verified in comparison with indoor experiments and field tests of the Daqing oil field. Then, the numerical simulations on a 1/4 well group in a 5-spot pattern show that the precipitation grows with alkali concentration, temperature, and injection pressure and, thus, reduces reservoir permeability and oil recovery correspondingly. As a result, the selection of alkali with a weak base is preferable in ASP flooding by tradeoff strategy.  相似文献   

13.
We use a three-dimensional mixed-wet random network model representing Berea sandstone to compute displacement paths and relative permeabilities for water alternating gas (WAG) flooding. First we reproduce cycles of water and gas injection observed in previously published experimental studies. We predict the measured oil, water and gas relative permeabilities accurately. We discuss the hysteresis trends in the water and gas relative permeabilities and compare the behavior of water-wet and oil-wet media. We interpret the results in terms of pore-scale displacements. In water-wet media the water relative permeability is lower during water injection in the presence of gas due to an increase in oil/water capillary pressure that causes a decrease in wetting layer conductance. The gas relative permeability is higher for displacement cycles after first gas injection at high gas saturation due to cooperative pore filling, but lower at low saturation due to trapping. In oil-wet media, the water relative permeability remains low until water-filled elements span the system at which point the relative permeability increases rapidly. The gas relative permeability is lower in the presence of water than oil because it is no longer the most non-wetting phase.  相似文献   

14.
In this study, the main recovery mechanisms behind oil/water/gas interactions during the water-alternating-gas (WAG) injection process, in a network of matrix/fracture, were fundamentally investigated. A visual micromodel was utilized to provide insights into the potential applications of WAG process in fractured oil-wet media as well as the possibility of observing microscopic displacement behavior of fluids in the model. The model was made of an oil-wet facture/matrix network system, comprised of four matrix blocks surrounded with fractures. Different WAG injection scenarios, such as slug arrangements and the effects of fluid injection rates on oil recovery were studied. A new equation representing the capillary number, considering the fracture viscous force and matrix capillary force, was developed to make the experimental results more similar to a real field. In general, WAG tests performed in the fractured model showed a higher oil recovery factor compared with the results of gas and water injection tests at their optimum rates. The results showed that the presence of an oil film, in all cases, was the main reason for co-current drainage and double displacement of oil under applied driving forces. Furthermore, the formation of oil liquid bridges improved the recovery efficiency, which was greatly influenced by the size of fracture connecting the two matrix blocks; these connecting paths were more stable when there was initial water remaining in the media. Analyzing different recovery curves and microscopic view of the three phases in the transparent model showed that starting an injection mode with gas (followed by repeated small slugs of water and gas), could considerably improve oil recovery by pushing water into the matrix zone and increasing the total sweep efficiency.  相似文献   

15.
According to the research theory of improved black oil simulator, a practical mathematical model for C02 miscible flooding was presented. In the model, the miscible process simulation was realized by adjusting oil/gas relative permeability and effective viscosity under the condition of miscible flow. In order to predict the production performance fast, streamline method is employed to solve this model as an alternative to traditional finite difference methods. Based on streamline distribution of steady-state flow through porous media with complex boundary confirmed with the boundary element method (BEM), an explicit total variation diminishing (TVD) method is used to solve the one-dimensional flow problem. At the same time, influences of development scheme, solvent slug size, and injection periods on CO2 drive recovery are discussed. The model has the advantages of less information need, fast calculation, and adaptation to calculate CO2 drive performance of all kinds of patterns in a random shaped porous media with assembly boundary. It can be an effective tool for early stage screening andmiscible oil field.reservoir dynamic management of the CO2 miscible oil field.  相似文献   

16.

This is the second of two joint papers which study the influence of several physical properties on the transport phenomena in chemical flooding. To that aim, we use a previously reported ternary two-phase model into which representative physical properties have been incorporated as concentration-dependent functions. Physical properties such as phase behavior, interfacial tensions, residual saturations, relative permeabilities, phase viscosities and wettability have been analyzed in the first paper.

In this paper, we discuss the influence of capillary pressure, adsorption of the chemical component onto the rock and dispersion. Although arising from different phenomenological sources, these transport mechanisms show some similar effects on concentration profiles and on oil recovery. They are studied for systems with different phase behavior. A numerical analysis is also presented in order to determine the relevance of the number of grid blocks taken in the discretization of the differential equations. This numerical analysis provides useful guidelines for the selection of the appropriate numerical grid in each type of displacement.

  相似文献   

17.
Three-phase flow is a key process occurring in subsurface reservoirs, for example, during $\text{ CO }_2$ sequestration and enhanced oil recovery techniques such as water alternating gas (WAG) injection. Predicting three-phase flow processes, for example, the increase in oil recovery during WAG, requires a sound understanding of the fundamental flow physics in water- to oil-wet rocks to derive physically robust flow functions, i.e. relative permeability and capillary pressure. In this study, we use pore-network modelling, a reliable and physically based simulation tool, to predict the flow functions. We have developed a new pore-scale network model for rocks with variable wettability, from water- to oil-wet. It comprises a constrained set of parameters that mimic the wetting state of a reservoir. Unlike other models, it combines three main features: (1) A novel thermodynamic criterion for formation and collapse of oil layers. The new model hence captures wetting film and layer flow of oil adequately, which affects the oil relative permeability at low oil saturation and leads to accurate prediction of residual oil. (2) Multiple displacement chains, where injection of one phase at the inlet triggers a chain of interface displacements throughout the network. This allows for the accurate modelling of the mobilisation of many disconnected phase clusters that arise, in particular, during higher order WAG floods. (3) The model takes realistic 3D pore-networks extracted from pore-space reconstruction methods and CT images as input, preserving both topology and pore shape of the sample. For water-wet systems, we have validated our model with available experimental data from core floods. For oil-wet systems, we validated our network model by comparing 2D network simulations with published data from WAG floods in oil-wet micromodels. This demonstrates the importance of film and layer flow for the continuity of the various phases during subsequent WAG cycles and for the residual oil saturations. A sensitivity analysis has been carried out with the full 3D model to predict three-phase relative permeabilities and residual oil saturations for WAG cycles under various wetting conditions with different flood end-points.  相似文献   

18.
非牛顿流体在非均质油藏渗流压力场实验   总被引:5,自引:0,他引:5  
在非均质油藏模型上进行非牛顿流体流动物理模拟实验,对比研究水驱、聚合物驱和交联聚合物对提高石油采收率的影响.通过布置高精度的压差传感器测量不同驱替过程模型中的渗流压力场的动态变化,成胶后的交联聚合物封堵了高渗条区,改变了油藏内流体流动方向,驱替出低渗区内油,提高了采收率.  相似文献   

19.

Three-phase flow in porous media is encountered in many applications including subsurface carbon dioxide storage, enhanced oil recovery, groundwater remediation and the design of microfluidic devices. However, the pore-scale physics that controls three-phase flow under capillary dominated conditions is still not fully understood. Recent advances in three-dimensional pore-scale imaging have provided new insights into three-phase flow. Based on these findings, this paper describes the key pore-scale processes that control flow and trapping in a three-phase system, namely wettability order, spreading and wetting layers, and double/multiple displacement events. We show that in a porous medium containing water, oil and gas, the behaviour is controlled by wettability, which can either be water-wet, weakly oil-wet or strongly oil-wet, and by gas–oil miscibility. We provide evidence that, for the same wettability state, the three-phase pore-scale events are different under near-miscible conditions—where the gas–oil interfacial tension is ≤?1 mN/m—compared to immiscible conditions. In a water-wet system, at immiscible conditions, water is the most-wetting phase residing in the corners of the pore space, gas is the most non-wetting phase occupying the centres, while oil is the intermediate-wet phase spreading in layers sandwiched between water and gas. This fluid configuration allows for double capillary trapping, which can result in more gas trapping than for two-phase flow. At near-miscible conditions, oil and gas appear to become neutrally wetting to each other, preventing oil from spreading in layers; instead, gas and oil compete to occupy the centre of the larger pores, while water remains connected in wetting layers in the corners. This allows for the rapid production of oil since it is no longer confined to movement in thin layers. In a weakly oil-wet system, at immiscible conditions, the wettability order is oil–water–gas, from most to least wetting, promoting capillary trapping of gas in the pore centres by oil and water during water-alternating-gas injection. This wettability order is altered under near-miscible conditions as gas becomes the intermediate-wet phase, spreading in layers between water in the centres and oil in the corners. This fluid configuration allows for a high oil recovery factor while restricting gas flow in the reservoir. Moreover, we show evidence of the predicted, but hitherto not reported, wettability order in strongly oil-wet systems at immiscible conditions, oil–gas–water, from most to least wetting. At these conditions, gas progresses through the pore space in disconnected clusters by double and multiple displacements; therefore, the injection of large amounts of water to disconnect the gas phase is unnecessary. We place the analysis in a practical context by discussing implications for carbon dioxide storage combined with enhanced oil recovery before suggesting topics for future work.

  相似文献   

20.
IntroductionMisciblefloodingisadriveprocessbymixinginjectionfluid (solvent)andoil.Itsmainmechanismistodecreasetheresidualoilsaturationbyeliminatinginterfacialtensionbetweenphases.GasdrivehasanincreasingpercentageofEORprojectsinU .S .A .,Canadaandsomeothercountriesyearsbyyears.From 1960’s ,carbondioxideinjectionhasbeingstudiedinDaqingoilfieldofChina ,buttheprocessisslowforlackinggasresource .Inrecentyears,withtheinconsistentinreserve_productionequilibriumbecomingmoreseriousandthediscoveryo…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号