首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
A water-cooled 785 nm diode-side-pumped high-power CW Tm:YAG laser system at 2 μm is reported. 200 W output power is achieved with cooling water running at 8°C. As far as we know, this is the highest output power for a diode-pumped all solid-state 2 μm Tm:YAG laser. The output corresponds to optical-to-optical conversion efficiency of 11.2%, with a slope efficiency of about 22.8%. To make the system structure simple, only deionized water is used as the coolant instead of alcohol- or glycol-water mixture or the liquid nitrogen in the reported high-power Tm rod laser experiments, which were performed at low temperature near the freezing point of water, or even below.  相似文献   

2.
Ma  J.  Li  Y.  Sun  Y.  Hou  X. 《Laser Physics》2008,18(4):393-395
By using a new saturable absorber V3+:YAG, a flash-lamp-pumped passively Q-switched Nd:YAG laser at 1.32 μm has been realized. The single-pulse energy and the pulse width of the output laser versus the pump energy are measured. With a cavity length of 440 mm and a pump energy of 43.4 J, the obtained single-pulse output energy and pulse width are 10 mJ and 86.9 ns, respectively, corresponding to a peak power of 115 kW.  相似文献   

3.
Using specially coated mirrors, an output energy of 0.97 J at 1.32 μm from a Nd3 : YAG pulse laser is obtained with pumping energy of 66 J. The repetition rate is 1 pulse/sec and the slope efficiency is 1.7%. The repetition rate can be changed from 1 pulse/sec to 10 pulses/sec.  相似文献   

4.
We report a low-threshold continuous-wave Tm:YAG laser that can be excited near 785?nm with low-cost, single-mode AlGaAs laser diodes. Low-threshold operation was achieved using a tightly focused, astigmatically compensated x-cavity containing a 2-mm-thick Tm:YAG crystal with 5?% Tm3+ concentration. Two linearly polarized single-mode diodes operating at 785.8?nm were polarization coupled to end pump the resonator. With a 6?% output coupler, as high as 32?mW of output power could be obtained at 2016?nm with 184?mW of incident pump power. The output could be further tuned in the 1935?C2035?nm range. Slope efficiency measurements indicated that cross-relaxation was very effective at this doping level. With a 2?% output coupler, lasing could be obtained with as low as 32.3?mW of pump power. In the limit of vanishing output coupling, the incident threshold pump power could be reduced to as low as 25?mW. To our knowledge, this is among the lowest lasing thresholds reported to date for continuous-wave, room-temperature thulium lasers.  相似文献   

5.
In this Letter, we have designed and fabricated a III-V semiconductor multilayer based on surface plasmon resonance (SPR) operating at the telecom wavelength. Optimization of the optogeometrical parameters and the metal/semiconductor layers required for this novel structure was conducted accurately by theoretical tools using the Maxwell equations. Technological fabrication of the device and its experimental characterizations using an evanescent coupling configuration was performed: the results have confirmed the existence of SPR associated to a sharp width response. This study could be a first step in the design of new plasmonic-semiconductor-based optical devices such as modulators and switches.  相似文献   

6.
The operation of a continuous-wave mode-locked silver gallium selenide (AgGaSe2) optical parametric oscillator (OPO) is reported. The OPO was synchronously excited by 120-fs-long pulses of 1.55-μm radiation at a repetition rate of 82 MHz. The 1.55-μm radiation is generated by a noncritically phasematched cesium-titanyl-arsenate (CTA)-OPO pumped by a mode-locked Ti:sapphire laser. The AgGaSe2-OPO generates signal and idler radiation in the range from 1.93 μm to 2.49 μm and from 4.1 μm to 7.9 μm, respectively. Up to 67 mW of signal wave output power has been obtained. The experimentally determined pulse duration and chirp parameters are in reasonable agreement with results from a numerical model taking into account group velocity mismatch, group velocity dispersion, self phase modulation, and chirp enhancement. Received: 6 August 1999 / Revised version: 4 October 1999 / Published online: 3 November 1999  相似文献   

7.
The scattering effect of Tm:YAG ceramic has been investigated and the scattering coefficient at 1064 nm wavelength is measured to be 0.014 cm−1. Furthermore, a high power Tm:YAG ceramic laser with a slope efficiency of 10.7% has been built, which is end-pumped at a central wavelength of 805 nm. The 2-μm maximum output power is 7.1 W with an optical-optical conversion efficiency of 7.2%.  相似文献   

8.
9.
Sensitivity studies are also performed, to evaluate the minimum detectable concentration of HCl in air. Received: 7 August 1998/Revised version: 5 October 1998  相似文献   

10.
We report on double-peak thermally tuned reflectivity of optical phase conjugation in InP:Fe under dc fields. A single-pump four-wave mixing geometry generates a phase-conjugate reflectivity up to 6.7% for a pump intensity of 28 mW/cm2 at 1.32 μm wavelength. The phase-conjugate reflectivity exhibits strong temperature dependence that is attributed to the phase-shift variations of the index grating due to optical power density of the intensity distribution. Two strong peaks in phase-conjugate reflectivity are observed near room temperature and are separated by 3 °C. Our theoretical predictions, which are based on the modified single-defect model, are in good agreement with the experimental findings. Received: 6 December 2000 / Revised version: 13 February 2001 / Published online: 27 April 2001  相似文献   

11.
We demonstrated an Fe:ZnSe laser pumped by a 2.93-μm Cr, Er:YAG laser at liquid nitrogen and room temperature in single-shot free-running operation for the first time. The xenon flash lamp pumped Cr, Er:YAG laser had a maximum single pulse energy of 1.414 J, and the threshold and slope efficiency were 141.70 J and 0.70% which were respectively reduced by 29.3% and increased by 52.2% compared with the Er:YAG laser. At liquid nitrogen temperature of 77 K, the maximum single pulse energy of the Fe:ZnSe laser was 197.6 m J, corresponding to a slope efficiency of 13.4%. The central wavelength and full width at half maximum(FWHM) linewidth were 4037.4 nm and 122.0 nm, respectively. At room temperature, the laser generated a maximum single pulse energy of 3.5 mJ at the central wavelength of 4509.6 nm with an FWHM linewidth of 171.5 nm.  相似文献   

12.
Pulsed quantum-cascade-laser spectrometers are usually used to detect atmospheric gases with either the interpulse technique (short pulses, typically 5–20 ns) or the intrapulse technique (long pulses, typically 500–800 ns). Each of these techniques has its drawbacks. Particularly the gas absorption spectra are generally distorted. We have previously developed another technique called intermediate-size pulses (typically 50–100 ns) technique for gas detection using pulsed QCL spectrometers. In this paper, infrared spectra of ammonia recorded with this technique in the 10 μm region are presented. For the NH3 spectra recorded at low pressure (i.e. in the mbar range), the spectra show typical oscillations after the absorption. The Beer–Lambert law cannot explain these oscillations, termed the rapid-passage effect. Comparisons between experimental and calculated spectra will be realized. This phenomenon is not satisfactory from a spectroscopic point of view and spectra must be recorded at higher pressures. For the NH3 spectra recorded at higher pressure (i.e. in the 50 mbar range), the oscillations disappear and the Beer–Lambert law could be reused. This paper will demonstrate that the intermediate-size technique gives reliable measurements for NH3 detection. Moreover the typical apparatus function (0.003 cm−1 HWHM) is far lower from the typical apparatus function of the interpulse QCL spectrometers (0.015 cm−1 HWHM).  相似文献   

13.
In this paper ~16 μm-emitting multimode InP-related quantum cascade lasers are presented with the maximum operating temperature 373 K, peak and average optical power equal to 720 mW and 4.8 mW at 303 K, respectively, and the characteristic temperature (T0) 272 K. Two types of the lasers were fabricated and characterized: the lasers with a SiO2 layer left untouched in the area of the metal-free window on top of the ridge, and the lasers with the SiO2 layer removed from the metal-free window area. Dual-wavelength operation was obtained, at λ  15.6 μm (641 cm?1) and at λ  16.6 μm (602 cm?1) for lasers with SiO2 removed, while within the emission spectrum of the lasers with SiO2 left untouched only the former lasing peak was present. The parameters of these devices like threshold current, optical power and emission wavelength are compared. Lasers without the SiO2 layer showed ~15% lower threshold current than these ones with the SiO2 layer. The optical powers for lasers without SiO2 layer were almost twice higher than for the lasers with the SiO2 layer on the top of the ridge.  相似文献   

14.
We present the results obtained with a Ho,Tm:YLF crystal grown at a new crystal growth facility in Pisa. The optical quality of the sample has been tested by studying its performance as the active medium of a laser operating at 2.06 μm. We employed three different pump laser sources: a Ti:sapphire, a diode (both tuned at 793 nm) and, for the first time, a continuous-wave Co:MgF2 laser, tuned at 1.682 μm. At room temperature the best slope efficiency was 30 % in the case of “red” pumping, and 59 % in the case of “infrared” excitation. The typical lasing threshold is about 100 mW. Received: 14 March 2001 / Revised version: 15 June 2001 / Published online: 19 September 2001  相似文献   

15.
With a 10-W diode laser to pump Nd:GdVO4 crystal in a folded cavity, we demonstrated Cr4+:YAG passively Q-switched Nd:GdVO4 lasers at 1.06 μm. The maximum average output power of 2.1 W and the highest peak power of 625 W were, respectively, obtained when the initial transmissions of the Cr4+:YAG crystals were 90% and 80%. Received: 8 September 1999 / Revised version: 30 December 1999 / Published online: 8 March 2000  相似文献   

16.
17.
A Nd:YVO4 laser, end-pumped by a fiber-coupled diode-laser array, generates 7.3 W of output power at 1342 nm, the highest so far reported for this host crystal. The slope efficiency is 40% and the output-beam divergence is close to the diffraction limit. An important point in attaining such results is the choice of crystals with low Nd concentration. Received: 16 July 2002 / Published online: 25 October 2002 RID="*" ID="*"Corresponding author. Fax: +39-050/844333, E-mail: dilieto@df.unipi.it RID="**" ID="**"Permanent address: Scuola Normale Superiore, Piazza dei Cavalieri 7, Pisa, Italy  相似文献   

18.
A new type host of germanate glass (GeO2− BaO−BaF2−Ga2O3−La2O3) codoped with Tm2O3 has been investigated for application as laser material. It possesses a large emission cross section with the value of 9.3×10−21 cm2 at 1.8 μm. Judd-Ofelt intensity parameters and radiative transition probability are calculated and analyzed by Judd-Ofelt theory and absorption spectra. The infrared emission spectra at 1.8 μm have been obtained by using a 794 nm laser diode as excitation resource. The emission intensity ratio of 1.8 (3F43H6) to 1.47 μm (3H43F4) increases, while the experimental lifetime of the Tm3+:3H4 level decreases by increasing Tm2O3 concentration, which is attributed to the presence of a cross relaxation process. The most intensive emission at 1.8 μm is achieved from the germanate glass with the concentration of Tm2O3 reaches 1.0 wt%. The extended overlap integral method is used to calculate the microparameter of the energy transfer and the critical distance, which are derived to better understand the energy transfer process of thulium ions in the germanate glass responsible for emission at 1.8 μm.  相似文献   

19.
黄莉蕾  洪治 《物理学报》1998,47(9):1504-1508
由跃迁速率方程推出了三能级系统的激光阈值和斜率效率解析式.根据测试的吸收谱,计算了YAG晶体中Er3+离子的吸收截面.分析了1.6μm波长的激光特征.  相似文献   

20.
Er:YAG晶体1.6μm波长激光输出特性理论分析   总被引:1,自引:1,他引:0       下载免费PDF全文
黄莉蕾  洪治 《物理学报》1998,47(9):1504-1508
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号