首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Phase equilibria in the LaFeO3–“LaNiO3” were studied at 1100 °C in air. The samples were synthesized by standard ceramic and/or solution route via nitrate or citrate precursors. According to the results of XRD it was found that the homogeneity ranges of LaFe1−xNixO3−δ solid solution lay within 0.0 ≤ x ≤ 0.4 (sp.gr. Pbnm) and 0.6 ≤ x ≤ 0.8 (sp.gr. ). The structural parameters (bond lengths, atom coordinates) for the single-phase samples were refined using Rietveld analysis. The unit cell parameters versus LaFe1−xNixO3−δ composition are presented.  相似文献   

2.
2,3,4-triphenyl-1-oxa-4-azabutadine (C20H15NO) has been studied by X-ray analysis and AM1 molecular orbital methods. It crystallises in the triclinic space group P-1 with a=9.414(3), b=10.479(3), c=8.385(2) Å, =103.31(3)°, β=97.10(3)°, γ=74.09(1)°, V=772.5(4) Å3, Z=2, Dc=1.227 gcm−3, and μ(MoK)=0.075 mm−1 and F000=300. The structure was solved by direct methods and refined to R=0.043 for 2672 reflections [I>2σ(I)]. The conformational analysis of the title compound were investigated by semi-empirical quantum mechanical AM1 calculations. The minimum conformation energies were calculated as a function of the three torsion angles θ1(O(1)C(7)C(8)N(1)), θ2(C(8)N(1)C(15)C(16)) and θ3(C(14)C(9)C(8)N(1)). The results are compared with the X-ray results. C=O and C=N groups are twisted about each other by 95.5(2)°.  相似文献   

3.
The paper presents a new method for predicting the frequency of the b1 mode, which is infrared-inactive, in complexes of the type LM(CO)5 belonging to C4V point group. The method was based on the relation λ3=λ4+[(1−δ/δ)](λ1λ2), where δ=(λ1λ2)/(λ1λ2+λ3λ4), λ1, λ2, λ3 and λ4 are the λ parameters of the , , b1 and e modes, respectively. For a large numbers of complexes of the type LM(CO)5 the average value of δ was found to be 0.80, with a standard deviation of 0.02. With the use of average value of δ, the frequencies of b1 mode were estimated. The result obtained indicated that there exists a rather good fit between observed and calculated frequencies, with a mean error of 2.7 cm−1. In addition, it was shown that the δ parameter can be used as a criterion of the correct band assignment for the complexes understudy.  相似文献   

4.
The molecular structure and conformational properties of O=C(N=S(O)F2)2 (carbonylbisimidosulfuryl fluoride) were determined by gas electron diffraction (GED) and quantumchemical calculations (HF/3-21G* and B3LYP/6-31G*). The analysis of the GED intensities resulted in a mixture of 76(12)% synsyn and 24(12)% synanti conformer (ΔH0=H0(synanti)−H0(synsyn)=1.11(32) kcal mol−1) which is in agreement with the interpretation of the IR spectra (68(5)% synsyn and 32(5)% synanti, ΔH0=0.87(11) kcal mol−1). syn and anti describe the orientation of the S=N bonds relative to the C=O bond. In both conformers the S=O bonds of the two N=S(O)F2 groups are trans to the C–N bonds. According to the theoretical calculations, structures with cis orientation of an S=O bond with respect to a C–N bond do not correspond to minima on the energy hyperface. The HF/3-21G* approximation predicts preference of the synanti structure (ΔE=−0.11 kcal mol−1) and the B3LYP/6-31G* method results in an energy difference (ΔE=1.85 kcal mol−1) which is slightly larger than the experimental values. The following geometric parameters for the O=C(N=S)2 skeleton were derived (ra values with 3σ uncertainties): C=O 1.193 (9) Å, C–N 1.365 (9) Å, S=N 1.466 (5) Å, O=C–N 125.1 (6)° and C–N=S 125.3 (10)°. The geometric parameters are reproduced satisfactorily by the HF/3-21G* approximation, except for the C–N=S angle which is too large by ca. 6°. The B3LYP method predicts all bonds to be too long by 0.02–0.05 Å and the C–N=S angle to be too small by ca. 4°.  相似文献   

5.
The monolayer behavior of three mixed systems of dipalmitoyl phosphatidyl choline (DPPC) with sterols; cholesterol (Ch), stigmasterol (Stig), and cholestanol (Chsta) formed at the interface of air/water (phosphate buffer solution at 7.4 with addition of NaCl) was investigated in terms of surface pressure (π) and molecular occupation surface area (A) relation. A series of πA curves at every 0.1 mol fraction of each sterol for the three combinations of mixed systems were obtained at 25.0 °C.

On the basis of the πA curves, the additivity rule in regard to A versus sterol mole fraction (Xst) was examined at discrete surface pressures such as 5, 10, 15, 20, 25, 30 mN m−1, and then from the obtained AXst curves the partial molecular areas (PMA) were determined. The AXst relation exhibited a marked negative deviation from ideal mixing in the pressure range below 10 mN m−1, i.e. in the expanded liquid film region (below the transition pressure of DPPC).

The PMA of Ch at π=5 mN m−1, for example, was found to be conspicuously negative in the range of XCh=0–0.2 (about −0.4 nm2 per molecule) and slightly positive (ca. 0.1 nm2 per molecule) in the range XCh=0.2 to 0.4. Above XCh=0.5, Ch’s PMA was almost the same as the surface area of pure Ch, while DPPC’s PMA was reduced to 60% of that of the pure system.

Excess Gibbs energy (ΔG(ex)) as a function of Xst was estimated at different pressures. Applying the regular solution theory to thermodynamic analysis of ΔG(ex), the activity coefficients (f1 and f2) of DPPC and the respective sterols as well as the interaction parameter (Ip) in the mixed film phase were evaluated; the results showed a marked dependence on Xst.

Compressibility Cs and elasticity Cs−1 were also examined. These physical parameters directly reflected the mechanical strength of formed monolayer film.

Phase diagrams plotting the collapse pressure (πc) against Xst were constructed, and the πc versus Xst curves were examined for the respective mixed systems in comparison with the simulated curves of ideal mixing based on the Joos equation.

Comparing the monolayer behavior of the three mixed systems, little remarkable difference was found in regard to various aspects. In common among the three combinations, the mole fraction dependence in monolayer properties was classified into three ranges: 0<Xst<0.2, 0.2<Xst<0.4 and 0.5<Xst<1. How the difference in the chemical structure of the sterols influenced the properties was examined in detail.  相似文献   


6.
Two nickel (imidazole) complexes, Ni(im)6Cl2·4H2O (1) and Ni(im)6(NO3)2 (2) (im=imidazole) have been synthesized and characterized by elemental analysis, IR, UV, TG and single crystal X-ray diffraction. 1 crystallizes in the triclinic space group P-1 with a=8.800(6) Å, b=9.081(6) Å, c=10.565(7) Å, =75.058(9)°, β=83.143(8)°, γ=61.722(8)°, V=718.3(8) Å3, Z=1 and R1 (wR2)=0.0469 (0.1497). 2 crystallizes in the trigonal space group R-3 with a=12.370(6) Å, b=12.370(6) Å, c=14.782(14) Å, =90.00°, β=90.00°, γ=120.00°, V=1959(2) Å3, Z=3 and R1 (wR2)=0.0358 (0.0955). 1 and 2 exhibit different supramolecular network due to their different counter anions and different hydrogen bonding connection. In compound 1, [Ni(im)6]2+ cation and counter anions Cl alternatively array in an ABAB fashion via N–HCl hydrogen bonding. In compound 2, the plane of each NO32− is almost parallel and each NO32− connect three different [Ni(im)6]2+ cations via N–HO hydrogen bonding.  相似文献   

7.
The title compound, 9,10-dihydro-9,10-etheno-1,8-dichloro-11-diphenylphosphinyl-12-(diphenylphosphinylethynyl)anthracene (1), has been synthesized and its crystal structure has been determined. The compound 1 crystallized into the triclinic space group P-1 with =74.837(4)°, β=88.156(4)°, γ=65.398(4)°, Z=2, Dc=1.352 gcm−3. In the crystal structure of 1a, one chloroform molecule was included by the compound 1 with a 1:1 ratio and the existence of non-classical intermolecular C–HO hydrogen bonds, intramolecular C–HCl and C–HO hydrogen bonds and π–π stacking were observed.  相似文献   

8.
The thermodynamic interactions in aqueous solutions of uncharged polymers were studied. Using a gel-deswelling method, the water activities (chemical potentials) in binary and ternary (two polymers in one solvent) solutions of methylcellulose (MC), polyvinyl alcohol (PVA) and polyvinyl pirrolidone (PVP), respectively were determined at various polymer volume fractions (1.0 × 10−2 < v2 < 1.0 × 10−1). On the theoretical basis of the Flory–Huggins approximations, the relevant solvent–segment (χ12 or χ13) and segment–segment pair interaction parameters (χ23) have been calculated.

The solvent activity curves (ln a1 versus polymer volume fraction) can be well described by a polynomial of third-degree in both the binary and the ternary solutions of the polymers. The solvent–segment interaction parameters exhibit a slight dependence on the polymer concentration. For each binary solution, the χ12v2 function can be fitted by a straight line wich has a small positive slope. In the mixtures of two polymers, the values of the segment–segment (χ23) interaction parameters were close to zero or sligthly negative (χ23 0 ± 0.03), indicating that under the studied conditions, the polymers in the ternary solutions are compatible.  相似文献   


9.
The samples of La0.4Sr0.6Co1−yFeyO3−δ (y = 0.2 and 0.4) were prepared using both conventional ceramic technique and nitrate–citrate precursors technique. The phase identification was made by X-ray diffraction method. The refinement of structural parameters from the XRD and neutron diffraction measurements was performed by full profile Rietveld analysis. Neutron diffraction showed that both samples possess distorted perovskite-type structure. Oxygen nonstoichiometry was measured by chemical analysis and thermogravimetry (TG) analysis in the range 20 ≤ T/°C ≤ 900 and 2E-5 ≤ pO2/atm ≤ 4E-1. TG-experiments indicate a relatively fast and reversible oxygen exchange at pO2 > 1E-2 atm. Mass saturation occurs at T < 300 °C upon cooling. The absolute value of oxygen nonstoichiometry was determined by iodometric titration measurements. It was found that both samples have practically stoichiometric composition at 300 °C in air and δ increases with increasing temperature and decreasing oxygen partial pressure.  相似文献   

10.
The crystal structure of bis(trifluoroacetato)-(N-methyl-meso-tetraphenylporphyrinato) thallium(III), Tl(N---Me---tpp)(CF3CO2)2 (2), was established and the coordination sphere around the Tl3+ ion is described as 4:3 tetragonal base–trigonal base piano stool seven-coordinate geometry in which the two cis CF3CO2 − groups occupy two apical sites. The plane of the three pyrrole nitrogen atoms [i.e. N(2), N(3) and N(4)] strongly bonded to Tl3+ is adopted as the reference plane 3N. The pyrrole N(1) ring bearing the methyl group [i.e. C(45)H3] is the most deviated one from the 3N plane making a dihedral angle of 23.3° whereas smaller angles of 9.9, 2.7 and 4.7° occur with pyrroles N(2), N(3), and N(4), respectively. Because of the larger size of the thallium(III) ion, Tl is considerably out of the 3N plane; its displacement of 1.02 Å is in the same direction as that of the two apical CF3CO2 − ligands. The intermolecular trifluoroacetate exchange process for 2 in CD2Cl2 solvent is examined through 19F and 13C NMR temperature-dependent measurements. In the slow-exchange region, the CF3 and carbonyl (CO) carbons of the CF3CO2 − groups in 2 are separately located at δ 114.3 [1J(C–F)=290 Hz, 3J(Tl–C)=411 Hz] and 155.1 [2J(C–F)=37 Hz, 2J(Tl–C)=204 Hz], respectively, at −106 °C. In the same slow-exchange region, the fluorine atoms of 2, Tl(N---Me---tpp)(CF3CO2)+ and the free CF3CO2 − are located at δ −73.76 [4J(Tl–F)=44 Hz], −73.30 [4J(Tl–F)=22 Hz], and −76.15 ppm at −97 °C, respectively.  相似文献   

11.
Irradiation of the 30-electron Mo25-C5Me5)2(CO)4 and Re2(CO)10 in toluene solution (containing H2O) afforded (in 1–2% yields) a novel triangular metal cluster, (η5-C5Me5)3Mo3(CO)42-H)(η3-O) (1), which was characterized by a single-crystal X-ray diffraction study. Compound 1, of pseudo Cs-m symmetry, has a triangulo-Mo33-O) core with composite Mo---H---Mo and Mo---Mo electron-pair bonds along one unusually short edge (2.660(1) Å) and Mo--- electron-pair bonds along the other two edges (2.916(1) and 2.917(1) Å). The edge-bridged hydride ligand, which displays a characteristic high-field proton NMR resonance at δ −17.79 ppm, was not found from the crystallographic determination but was located via a quantitative potential-energy-minimization method. This procedure unambiguously established that the optimized hydrogen position, which corresponds to a distinct coordination site with identical Mo---H distances of 1.85 Å, is the only one that can be sterically occupied by a metal-bound hydride ligand. This 46-electron species is the first electron-deficient trimolybdenum cluster containing a monoprotonated Mo---Mo double bond; its existence is attributed to ligand overcrowding due to the bulky pentamethylcyclopentadienyl rings. Black (η5- C5Me5)3Mo3(CO)42-H)(η3-O) · 1/2THF crystallizes with two formula species in a triclinic unit cell of P1 symmetry with a 8.603(4), b 11.115(4), c 19.412(11) Å, 80.69(4)°, β 101.10(4)°, and γ 98.88(3)° at −40° C. Least-squares refinement (RAELS with 221 variables) of one independent Mo3 molecule and a centrosymmetrically-disordered THF molecule converged at R1(F) 5.62%, R2(F 6.88% for 8460 independent diffractometry data (I0 ρ 3σ(I0 collected at −40° C with Mo-K radiation  相似文献   

12.
The far infrared spectrum from 370 to 50 cm−1 of gaseous 2-bromoethanol, BrCH2CH2OH, was recorded at a resolution of 0.10 cm−1. The fundamental O–H torsion of the more stable gauche (Gg′) conformer, where the capital G refers to internal rotation around the C–C bond and the lower case g to the internal rotation around the C–O bond, was observed as a series of Q-branch transitions beginning at 340 cm−1. The corresponding O–H torsional modes were observed for two of the other high energy conformers, Tg (285 cm−1) and Tt (234 cm−1). The heavy atom asymmetric torsion (rotation around C–C bond) for the Gg′ conformer has been observed at 140 cm−1. Variable temperature (−63 to −100°C) studies of the infrared spectra (4000–400 cm−1) of the sample dissolved in liquid xenon have been recorded. From these data the enthalpy differences have been determined to be 411±40 cm−1 (4.92±0.48 kJ/mol) for the Gg′/Tt and 315±40 cm−1 (3.76±0.48 kJ/mol) for the Gg′/Tg, with the Gg′ conformer the most stable form. Additionally, the infrared spectrum of the gas, and Raman spectrum of the liquid phase are reported. The structural parameters, conformational stabilities, barriers to internal rotation and fundamental frequencies have been obtained from ab initio calculations utilizing different basis sets at the restricted Hartree–Fock or with full electron correlation by the perturbation method to second order. The theoretical results are compared to the experimental results when appropriate. Combining the ab initio calculations with the microwave rotational constants, r0 adjusted parameters have been obtained for the three 2-haloethanols (F, Cl and Br) for the Gg′ conformers.  相似文献   

13.
The bimetallic [Pt(NH3)4]2[W(CN)8][NO3]·2H2O is characterised by single-crystal X-ray diffraction [S.G.P21/m(11), a=8.0418(7), b=19.122(2), c=9.0812(6) Å, Z=2]. All platinum centres have the square-plane D4h geometry with average dimensions Pt(1)–N 2.042(2) and Pt(2)–N 2.037(10) Å. The octacyanotungstate anion has the square-antiprismatic D4d configuration with average dimensions W(1)–C 2.164(13), C–N 1.140(12), W(1)–N 3.303(5) Å. The structure exhibits two different mutual orientations of Pt versus W units resulting in Pt(2)–W(1), W(1)* separations of 4.77(2), 4.55(2)* and Pt(1)–W(1) of 6.331(8) Å. A centrosymmetric structure reveals groups of two distinct columns: the first is formed by intercalated NO3 between parallel [Pt(1)(NH3)4]2+ planes and the second consists of [W(CN)8]3− interlayered by, parallel to square faces of W-antiprisms, [Pt(2)(NH3)4]2+. The structure is stabilised through a three-dimensional hydrogen bond network via nitrogen atoms of cyanide ligands, hydrogen atoms of NH3 ligands, water molecules and oxygen atoms of NO3 counteranions. The vibrational pattern and the range of ν(CN) frequencies attributable to the electronic environment of W(V) and W(IV) are consistent with the ground state Pt(II)↔W(V) charge transfer.  相似文献   

14.
Gas electron diffraction is applied to determine the geometric parameters of the silacyclobutane molecule using a dynamic model where the ring puckering was treated as a large amplitude motion. The structural parameters and the parameters of the potential function were refined taking into account the relaxation of the molecular geometry estimated from ab initio calculations at the MP2/6-311+G(d, p) level of theory. The potential function has been described as V() = V0[(/e)2 − 1]2 with the following parameters V0 = 0.82 ± 0.60 kcal/mol and e = 33.5 ± 2.7°, where is a puckering angle of the ring.

The geometric parameters at the minimum V() (ra in Å, in degrees and uncertainties given as three times the standard deviations including a scale error) are: r(Si–Hax) = 1.467(96), r(Si–Heq) = 1.468(96), r(Si–C) = 1.885(2), r(C–C) = 1.571(3), r(C–H) = 1.100(3), CSiC = 77.2(9), HSiH = 108.3, SiCHeq = 123.5(16), SiCHax = 111.9(16), CC5Heq = 118.4(24), CC5Hax = 112.3(24), HC3H = 107.7, δ(HSiH) = 6.6, δ(HC3H) = 7.0, where the tilts δ, HSiH, and HC3H are estimated from ab initio constraints. The structural parameters are compared with those obtained for related compounds.  相似文献   


15.
The crystal structure of N-(2-hydroxy-5-chlorophenyl) salicylaldimine (C13H10NO2Cl) was determined by X-ray analysis. It crystallizes orthorhombic space group P212121 with a=12.967(2) Å, b=14.438(3) Å, c=6.231(3) Å, V=1166.5(6) Å3, Z=4, Dc=1.41 g cm−3 and μ(MoK)=0.315 mm−1. The title compound is thermochromic and the molecule is nearly planar. Both tautomeric forms (keto and enol forms in 68(3) and 32(3)%, respectively) are present in the solid state. The molecules contain strong intramolecular hydrogen bonds, N1–H1O1/O2 (2.515(1) and 2.581(2) Å) for the keto form and O1–H01N1 for the enol one. There is also strong intermolecular O2–HO1 hydrogen bonding (2.599(2) Å) between neighbouring molecules. Minimum energy conformations AM1 were calculated as a function of the three torsion angles, θ1(N1–C7–C6–C5), θ2(C8–N1–C7–C6) and θ3(C9–C8–N1–C7), varied every 10°. Although the molecule is nearly planar, the AM1 optimized geometry of the title compound is not planar. The non-planar conformation of the title compound corresponding to the optimized X-ray structure is the most stable conformation in all calculations.  相似文献   

16.
Anion exchange membrane has been investigated in different electrolyte solutions by chronopotentiometry to explore the influence of co-ion and counterion of the exchange group of the membrane, on the transport phenomena. Chloride, nitrate, sulfate and acetate in sodium salts were used as counterions and sodium, potassium, calcium and ammonium in chloride salts were used as co-ions. The membrane showed a potential drop (E0) in all these electrolytes when a constant current was applied across it, which remained constant for a period less than τ, called the transition time and rose gradually to a maximum (Emax) value. The parameters such as τ, E0 and Emax and the potential jump (ΔE) and τ and the inflection zone (Δt) along the time axis have been measured and compared at an applied current density (I) of 10 mA cm−2 in 10 mM solutions. The values of τ1/2/zA[A0] or τ1/2/zC[C0], with or , E0 and ΔE with or (where rA and rC are the ionic radii of counter and co-ions, respectively) have been correlated. Permselectivity (P) and transference number of the membrane with respect to each one of the above electrolytes have been evaluated and discussed.  相似文献   

17.
The e.m.f. of the galvanic cells Pt,C,Te(l),NiTeO3,NiO/15 YSZ/O2 (Po2 = 0.21 atm),Pt and Pt,C,NiTeO3,Ni3TeO6,NiO/15 YSZ/O2 (Po2 = 0.21 atm),Pt (where 15 YSZ=15 mass% yttria-stabilized zirconia) was measured over the ranges 833–1104 K and 624–964 K respectively, and could be represented by the least-squares expressions E(1)±1.48 (mV) = 888.72 − 0.504277 (K) and E(II) ±4.21 (mV) = 895.26 − 0.81543T (K).

After correcting for the standard state of oxygen in the air reference electrode, and by combining with the standard Gibbs energies of formation of NiO and TeO2 from the literature, the following expressions could be derived for the ΔG°f of NiTeO3 and Ni3TeO6: ΔGf°(NiTeO3) ± 2.03 (kJ mol−1) = −577.30 + 0.26692T (K) and ΔG°f(Ni3TeO6)±2.54 (kJ mol−1) = −1218.66 + 0.58837T (K).  相似文献   


18.
The Schiff base compound, N-N′-bis(4-methoxybenzylidene)ethylenediamine (C18H20N2O2) has been synthesized and its crystal structure has been investigated by X-ray analysis and PM3 method. The compound crystallizes in monoclinic space group P21/n with a=10.190(1), b=7.954(1), c=10.636(1) Å, β=111.68(1)°, V=801.1(1) Å3, Z=2 and Dcal=1.229 Mgm−3. The title structure was solved by direct methods and refined to R=0.056 for 2414 reflections [I>3.0σ(I)] by full-matrix anisotropic least-squares methods. The energy profile of the compound was calculated by PM3 method as a function of θ[N1′–C9′–C9–N1]. The most stable molecular structure of the title compound is the anti conformation, which is different in energy by 5.0 and 1.0 kcal mol−1 from the eclipsed conformation I and gauche conformations, (III and V), respectively.  相似文献   

19.
Ji-Zhao Liang   《Polymer Testing》2002,21(8):2340-931
The melt extrudate swell and entry pressure losses are important characteristics of elastic properties during die extrusion of polymeric fluids. They are usually expressed with die-swell ratio (B) and entry pressure drop (ΔPo). In the present paper, the die-swell behavior and entrance pressure drop of a polypropylene (PP) filled with A-glass beads were investigated by using a Rosand capillary rheometer to identify the effects of the filler contents and extrusion rate on the elastic behavior of the sample melts. The experiments were carried out under the conditions with an apparent shear rate range of 50–104 s−1 and a temperature of 190 °C. The results showed that B increased nonlinearly with increasing shear rate at the wall (γw), and increased linearly with the increase of shear stress at the wall (τw). With the increase of the volume fraction of the fillers B decreased nonlinearly. Similarly, the entry pressure drop increased linearly with the increase of τw, whereas the influence of the filler concentration on ΔPo was insignificant in this case. Furthermore, B increased as a linear function of ΔPo, and extension stress (σe) increased nonlinearly with increasing γw.  相似文献   

20.
Triphenyltelluronium hexachloroplatinate (1), hexachloroiridate (2), tetrachloroaurate (3), and tetrachloroplatinate (4) were prepared from Ph3TeCl and potassium salts of the corresponding anions. Upon recrystallization of 4 from concentrated nitric acid, K2[PtCl6] and (Ph3Te)(NO3)·HNO3 (5) were obtained. The crystal structures of 1–3 and 5 are reported. Compounds 1 and 2 are isostructural. They are triclinic, P , Z=2 (the asymmetric unit contains two formula units). Compound 1: a=10.7535(2), b=17.2060(1), c=21.4700(3) Å, =78.9731(7), β=77.8650(4), γ=78.8369(4)°. Compound 2: a=10.7484(2), b=17.1955(2), c=21.4744(2) Å, =78.834(1), β=77.649(1), γ=78.781(1)°. Compound 3 is monoclinic, P21/c, Z=4, a=8.432(2), b=14.037(3), c=17.306(3) Å, β=93.70(3)°. Compound 5 is monoclinic. P21/n, Z=4, a=9.572(2), b=14.050(3), c=13.556(3) Å, β=90.76(3)°. The primary bonding in the Ph3Te+ cation in each salt is a trigonal AX3E pyramid with Te---C bond lengths in the range 2.095(8)–2.14(2) Å and the bond angles 94.1(6)–100.9(5)°. The weak TeCl (1–3) and TeO (5) secondary interactions expand the coordination sphere. In 1 and 2 the cation shows a trigonal bipyramidal AX3YE coordination with one primary Te---C bond and the shortest secondary TeCl contact in axial positions and the two other Te---C bonds and the lone-pair in equatorial positions. The cation in 3 shows a distorted octahedral AX3Y3E environment and that in 5 is a more complex AX3Y3Y′2 arrangement. In both latter salts the structure is a complicated three-dimensional network of cations and anions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号