首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The La dilution of the Kondo lattice CeCoIn5 is studied. The scaling laws found for the magnetic susceptibility and the specific heat reveal two well-separated energy scales, corresponding to the single-impurity Kondo temperature T(K) and an intersite spin-liquid temperature T(*). The Ce-dilute alloy has the expected Fermi liquid ground state, while the specific heat and resistivity in the dense Kondo regime exhibit non-Fermi-liquid behavior, which scales with T(*). These observations indicate that the screening of the magnetic moments in the lattice involves antiferromagnetic intersite correlations with a larger energy scale in comparison with the Kondo impurity case.  相似文献   

2.
We present a study of the spin dynamics of magnetic defects induced by Li substitution of the plane Cu in the normal state of YBa2Cu3O6+x. The fluctuations of the coupled Cu magnetic moments in the vicinity of Li are probed by near-neighbor 89Y and 7Li NMR spin lattice relaxation. The data indicate that the magnetic perturbation fluctuates as a single entity with a correlation time tau which scales with the local static susceptibility. This behavior is reminiscent of the low T Kondo state of magnetic impurities in conventional metals. Surprisingly it extends well above the "Kondo" temperature for the underdoped pseudogapped case.  相似文献   

3.
Electron spin resonance (ESR) measurements of the ferromagnetic (FM) Kondo lattice system CeRuPO show a well defined ESR signal which is related to the Ce3+ magnetism. In contrast, no ESR could be observed in the antiferromagnetic (AFM) homologue CeOsPO. Additionally, we detect an ESR signal in ferromagnetic YbRh while it was absent in a number of Ce or Yb intermetallic compounds with dominant AFM exchange. Thus, the observation of an ESR signal in a Kondo lattice is neither specific to Yb nor to the proximity to a quantum critical point, but seems to be connected to the presence of FM fluctuations. These conclusions not only provide a basic concept to understand the ESR in Kondo lattice systems even well below the Kondo temperature (as observed in YbRh2Si2) but point out ESR as a prime method to investigate directly the spin dynamics of the Kondo ion.  相似文献   

4.
We present NMR data in the normal and superconducting states of CeCoIn5 for fields close to H(c2)(0)=11.8 T in the ab plane. Recent experiments identified a first-order transition from the normal to superconducting state for H>10.5 T, and a new thermodynamic phase below 290 mK within the superconducting state. We find that the Knight shifts of the In(1), In(2), and the Co are discontinuous across the first-order transition and the magnetic linewidths increase dramatically. The broadening differs for the three sites, unlike the expectation for an Abrikosov vortex lattice, and suggests the presence of static spin moments in the vortex cores. In the low-temperature and high-field phase, the broad NMR lineshapes suggest ordered local moments, rather than a long-wavelength quasiparticle spin density modulation expected for an FFLO phase.  相似文献   

5.
We present a mechanism of resistivity minimum in conduction electron systems coupled with localized moments, which is distinguished from the Kondo effect. Instead of the spin-flip process in the Kondo effect, electrons are elastically scattered by local spin correlations which evolve in a particular way under geometrical frustration as decreasing temperature. This is demonstrated by the cellular dynamical mean-field theory for a spin-ice-type Kondo lattice model on a pyrochlore lattice. Peculiar temperature dependences of the resistivity, specific heat, and magnetic susceptibility in the non-Kondo mechanism are compared with the experimental data in metallic Ir pyrochlore oxides.  相似文献   

6.
7.
We find that Kondo resonant conductance can occur in a quantum dot in the Coulomb blockade regime with an even number of electrons N. The contacts are attached to the dot in a pillar configuration, and a magnetic field B( perpendicular) along the axis is applied. B( perpendicular) lifts the spin degeneracy of the dot energies. Usually, this prevents the system from developing the Kondo effect. Tuning B( perpendicular) to the value B(*) where levels with different total spin cross restores both the degeneracy and the Kondo effect. We analyze a dot charged with N = 2 electrons. Coupling to the contacts is antiferromagnetic due to a spin selection rule and, in the Kondo state, the charge is unchanged while the total spin on the dot is S = 1/2.  相似文献   

8.
We present inelastic neutron scattering experiments, performed near the antiferromagnetic quantum critical point in Ce(Ru0.24Fe0.76)2Ge2. Both local and long-range fluctuations of the local moments are observed, but due to the Kondo effect only the latter are critical. We propose a phenomenological expression which fits the energy E, temperature T, and wave vector q dependences of the dynamic susceptibility, describing the non-Fermi liquid E/T scaling found at every q.  相似文献   

9.
We propose that competition between Kondo and magnetic correlations results in a novel universality class for heavy fermion quantum criticality in the presence of strong randomness. Starting from an Anderson lattice model with disorder, we derive an effective local field theory in the dynamical mean-field theory approximation, where randomness is introduced into both hybridization and Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions. Performing the saddle-point analysis in the U(1) slave-boson representation, we reveal its phase diagram which shows a quantum phase transition from a spin liquid state to a local Fermi liquid phase. In contrast with the clean limit case of the Anderson lattice model, the effective hybridization given by holon condensation turns out to vanish, resulting from the zero mean value of the hybridization coupling constant. However, we show that the holon density becomes finite when the variance of the hybridization is sufficiently larger than that of the RKKY coupling, giving rise to the Kondo effect. On the other hand, when the variance of the hybridization becomes smaller than that of the RKKY coupling, the Kondo effect disappears, resulting in a fully symmetric paramagnetic state, adiabatically connected to the spin liquid state of the disordered Heisenberg model. We investigate the quantum critical point beyond the mean-field approximation. Introducing quantum corrections fully self-consistently in the non-crossing approximation, we prove that the local charge susceptibility has exactly the same critical exponent as the local spin susceptibility, suggesting an enhanced symmetry at the local quantum critical point. This leads us to propose novel duality between the Kondo singlet phase and the critical local moment state beyond the Landau-Ginzburg-Wilson paradigm. The Landau-Ginzburg-Wilson forbidden duality serves the mechanism of electron fractionalization in critical impurity dynamics, where such fractionalized excitations are identified with topological excitations.  相似文献   

10.
We report an electron spin resonance (ESR) study on single crystals of the heavy fermion metal YbRh2Si2 which shows pronounced non-Fermi liquid behavior related to a close antiferromagnetic quantum critical point. It is shown that the observed ESR spectra can be ascribed to a bulk Yb3+ resonance. This is the first observation of ESR of the Kondo ion itself in a dense Kondo lattice system. The ESR signal occurs below the Kondo temperature (T(K)) which thus indicates the existence of large unscreened Yb3+ moments below T(K). We observe the spin dynamics as well as the static magnetic properties of the Yb3+ spins to be consistent with the results of nuclear magnetic resonance and magnetic susceptibility.  相似文献   

11.
12.
13.
Thermodynamic and transport properties of the La-diluted Kondo lattice CeNi(2)Ge(2) were studied in a wide temperature range. The Ce-rich alloys Ce(1-x)La(x)Ni(2)Ge(2) were found to exhibit distinct features of the coherent heavy Fermi liquid. At intermediate compositions (0.7≤x≤0.9), non-Fermi liquid properties have been observed, followed by the local Fermi liquid behavior in the dilute limit. The 4f-electron contribution to the specific heat was found to follow the predictions of the Kondo-impurity model in both the local as well as the coherent regimes, with the characteristic Kondo temperature decreasing rapidly from about 30 K for the parent compound CeNi(2)Ge(2) to about 1 K in the most dilute samples. The specific heat does not show any evidence for the emergence of a new characteristic energy scale related to the formation of the coherent Kondo lattice.  相似文献   

14.
We have performed an inelastic neutron scattering study of the low energy spin dynamics of the heavy fermion compound Ce0.8La0.2Al3 as a function of temperature and external pressure up to 5 kbar. At temperatures below 3 K, the magnetic response transforms from a quasielastic form, common to many heavy fermion systems, to a single well-defined inelastic peak, which is extremely sensitive to external pressure. The scaling of the spin dynamics and the thermodynamic properties are in agreement with the predictions of the anisotropic Kondo model.  相似文献   

15.
The symmetric periodic Anderson model is well known to capture the essential physics of Kondo insulator materials. Within the framework of dynamical mean-field theory, we develop a local moment approach to its single-particle dynamics in the paramagnetic phase. The approach is intrinsically non-perturbative, encompasses all energy scales and interaction strengths, and satisfies the low-energy dictates of Fermi liquid theory. It captures in particular the strong coupling behaviour and exponentially small quasiparticle scales characteristic of the Kondo lattice regime, as well as simple perturbative behaviour in weak coupling. Particular emphasis is naturally given to strong coupling dynamics, where the resultant clean separation of energy scales enables the scaling behaviour of single-particle spectra to be obtained. Received 19 December 2002 Published online 14 March 2003  相似文献   

16.
Measurements of the magnetic susceptibility between 0.03 and 300 K and of the magnetization between 0.05 and 10K for magnetic fields up to 60kOe have been used to investigate effects from the interaction between the conduction electrons and local magnetic moments in (La1–x Ce x )B6 alloys (0.0007x0.10). For Ce concentrationsx<0.006 the data show Kondo-type single impurity behavior at low temperatures with a transition from a magnetic to a non-magnetic regime of the Ce ions. In the magnetic regime the impurity susceptibility follows a Curie-Weiss law, and in the non-magnetic regime it varies withT 2. An external magnetic field gradually restores the free-ion behavior of the Ce impurities. For more concentrated alloys interactions between the impurities are observed. The RKKY interaction strength derived is more than two orders of magnitude smaller than in the Kondo systemCuFe. Values of thes–f exchange integral,J, estimated from both the Kondo effect and the RKKY interactions are in good agreement. The relatively high Kondo temperature, in spite of a smallJ, can be explained by a density-of-states argument. The influence of crystal field excitation on the susceptibility is also discussed.  相似文献   

17.
Motivated by recent experiments on Yb-doped CeCoIn5, we study the effect of correlated disorder in a Kondo lattice. Correlations between the impurities are considered at the two-particle level. We use a mean-field theory approximation for the Anderson lattice model to calculate how the emergence of coherence in the Kondo lattice is impacted by correlations between impurities. We show that the rate at which disorder suppresses coherence temperature depends on the length of the impurity correlations. As the impurity concentration increases, we generally find that the suppression of coherence temperature is significantly reduced. The results are discussed in the context of available experimental data.  相似文献   

18.
The influence of spin dynamics on the Kondo effect manifestations in the Kondo lattices is investigated within perturbation theory with respect to thes-f interaction. It may give rise to Kondo-like divergencies in the electron self-energy already in the second order, resulting in an appreciable effective mass enhancement. As for usual Kondo contributions to thermodynamic and transport properties, the effect of spin dynamics reduces roughly to the replacement ln , with the characteristic spin-fluctuation energy. The thermoelectric power of dense Kondo systems is discussed. Singular contributions to the electron self-energies in the ferro-and antiferromagnetic state are considered. Kondo-like corrections to the intersite exchange interactions, saturation magnetic moment and total energy in a magnetically ordered state are calculated. The strong-coupling regionT<T K is investigated within the Anderson lattice model. A decrease ofT K due to spin fluctuations is demonstrated.  相似文献   

19.
《Physics letters. A》2014,378(26-27):1854-1866
We investigate the spin-dependent thermoelectric effect of a Rashba molecular quantum dot coupled with both ferromagnetic leads and a phonon bath in the Kondo regime. A transport formula is derived to deal with the strong electron–electron and electron–phonon interaction with the spin–orbit coupling of arbitrary intensity simultaneously. The numerical results show that only strengthening the electron–phonon coupling can improve the charge thermopower, while even very small spin–orbit coupling can suppress both the thermocharge figure of merit and the thermospin one at the Kondo temperature greatly. It is also found that the electron–phonon coupling in conjunction with the spin–orbit coupling can rebuild Fermi liquid state in the Kondo regime.  相似文献   

20.
Experimental results for the susceptibility, magnetization, specific heat, 4f occupation number, Hall effect, and magnetoresistance for single crystals of the intermediate valence (IV) compound YbAl3 show that, in addition to the Kondo temperature scale T(K) approximately 670 K, there is a low temperature scale T(coh) approximately 30-40 K for the onset of Fermi liquid coherence. Furthermore, the crossover from the low temperature Fermi liquid regime to the high temperature local moment regime is slower than predicted by the Anderson impurity model. We suggest that these effects are generic for IV compounds and we discuss them in terms of the theory of the Anderson lattice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号