首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
2.
Nanocrystalline La1−xBaxMnO3 (0.0≤x≤0.3) manganites have been prepared by a simple and instantaneous solution combustion method, which is a low temperature initiated synthetic route to obtain fine-grained powders with relatively high surface area. The phase purity and crystal structure of the combustion products are carried out by powder X-ray diffraction. The as-made nanopowders are in cubic phase. On calcination to 900 °C, barium doped manganites retain cubic phase, whereas barium free manganite transformed to rhombohedral phase. The scanning electron microscope (SEM) results revealed that the combustion-derived compounds are agglomerated with fine primary particles. The doped manganites have surface area in the range 24-44 m2/g. The surface area of the manganites increases with barium content, whereas it decreases on calcination. Both undoped and doped lanthanum manganites show two active IR vibrational modes at 400 and 600 cm−1. The low temperature resistivity measurements have been carried out by four-probe method down to 77 K. All the samples exhibit metal-insulator behaviour and metal-insulator transition temperature (TM-I) in the range 184-228 K and it is interesting to note that, as the barium content increases the TM-I shifts to lower temperature side. The maximum TM-I of 228 K is observed for La0.9Ba0.1MnO3 sample.  相似文献   

3.
The electron structure of undoped LaMnO3 and slightly doped La1?x SrxMnO3 manganites has been calculated within the framework of a generalized tight binding method with explicit allowance for strong intraatomic electron correlations. According to the results of these calculations, the ground state in orbitally disordered undoped LaMnO3 ferromagnets would be metallic despite the Mott-Hubbard correlation gap in the spectrum of quasiparticles. Owing to the orbital ordering, the insulating state is stabilized in both antiferromagnetic and paramagnetic phases. In-gap states of a polaron nature with a spectral weight proportional to the dopant concentration have been found near the top of the valence band in La1?x SrxMnO3. As the doping level increases, a metal state appears in the ferromagnetic phase, which has a metallic character for one spin subband and an insulating character for the other subband (representing the so-called half-metallic state).  相似文献   

4.
Orbital order present in several transition metal compounds could give rise to topological defects. Here we argue that the topological defects in orbital ordered half doped manganites are orbital solitons that carry a charge of +/-e/2. When extra charge is added to the system an array of solitons is formed and an incommensurate solitonic phase occurs. The striking experimental asymmetry in the phase diagram as electrons or holes are added to half doped manganites is explained by the energy difference between positive and negative charged solitons. The presence of nanoscale inhomogeneities in manganites is naturally explained by the existence of solitonic phases.  相似文献   

5.
We demonstrate that delta doping can be used to create a dimensionally confined region of metallic ferromagnetism in an antiferromagnetic (AFM) manganite host, without introducing any explicit disorder due to dopants or frustration of spins. Theoretical consideration of these additional carriers shows that they cause a local enhancement of ferromagnetic double exchange with respect to AFM superexchange, resulting in local canting of the AFM spins. This leads to a highly modulated magnetization, as measured by polarized neutron reflectometry. The spatial modulation of the canting is related to the spreading of charge from the doped layer and establishes a fundamental length scale for charge transfer, transformation of orbital occupancy, and magnetic order in these manganites. Furthermore, we confirm the existence of the canted, AFM state as was predicted by de Gennes [Phys. Rev. 118, 141 (1960)] but had remained elusive.  相似文献   

6.
The effect of Li (0-5 wt%) doping on the properties of WO3 thin films deposited using an automated homemade spray pyrolysis unit is studied. Change in structural and optical properties is observed on doping with Li. The XRD patterns shows that undoped WO3 film has an orthorhombic phase while the Li (1-5 wt%) doped WO3 films have tetragonal phase. The SEM and AFM images confirm relatively smooth surface of Li doped WO3 films compared to undoped WO3 film. Transmission spectra reveal that the transparency of the Li-doped films is much greater than that of undoped film. From the transmission data, the direct, indirect bandgap and phonon energies were calculated. Room temperature photoluminescence spectra showed pronounced blue emission on doping with Li.  相似文献   

7.
The magnetic and transport properties of the manganites with the perovskite structure are mainly characterized by a competition between ferromagnetism and antiferromagnetism, and between a metallic like and an insulating behavior. Charge and orbital ordering, and phase separation play a prominent role in the appearance of such properties, since they can be modified in a spectacular manner by external factors, making the different physical properties metastable. There we describe two effects that deeply modify those properties, the doping of Mn sites and the thermal cycling under a magnetic field.The doping of Mn sites by various magnetic cations—Cr, Co, Ni, Ru, Rh, Ir—destroys charge/orbital-ordering and induces ferromagnetism and metallicity in the antiferromagnetic matrix of the manganites. The magnetic phase diagram of the systems Ln1−xCaxMnO3 is considerably modified by such doping. The metastability of the magnetic states is explained in terms of models based on the electronic structure of the doping elements in connection with a possible valence fluctuation.The thermal cycling is also a spectacular effect, observed in chromium doped manganites. For instance, an increase of resistivity by several orders of magnitude can be observed by thermal cycling under a magnetic field, whereas no effect is obtained in the corresponding undoped material. This behavior is interpreted in terms of strains induced charge localization, at the interface between ferromagnetic/antiferromagnetic domains in the antiferromagnetic matrix.  相似文献   

8.
Ferromagnetism and colossal magnetoresistance from phase competition   总被引:1,自引:0,他引:1  
We report a multicomponent theory for the coexistence of charge ordering (CO), and antiferromagnetic (AFM) and ferromagnetic (FM) spin ordering. This kind of state is invoked for manganites by Moreo et al., Science 283, 2034 (1999) and observed in recent experiments. We show that doping an AFM or CO state always generates a FM component. FM, AFM, and CO necessarily coexist in a particle-hole asymmetric system. Melting of large AFM-CO orders by small magnetic fields and colossal magnetoresistance (CMR) arise whenever the CO and AFM order parameters have similar magnitude and momentum structure. Hole doping favors FM metallic states while electron doping favors AFM-CO states, as in CMR manganites.  相似文献   

9.
We have studied the magnetic and transport properties of Fe doped La0.65A0.35Mn0.95Fe0.05O3 (A = Ca, Sr, Pb, Ba) manganites. All the compositions show ferromagnetic/metal to paramagnetic/insulator transition (TC) except the Pb doped sample which is insulating and ferromagnetic (FM) in the entire temperature range. The magnetization and TC are decreased by decreasing the cation size on La site. The transition temperature and magnetic moment at 77 K is a maximum for Sr doped sample and is decreasing if we increase or decrease the cation size from Sr size. The maximum value of TC and magnetic moment for Sr based sample is most likely due to the closer ionic sizes of La and Sr as compared to the other dopants (Ca, Pb, and Ba). We observed a spin freezing type effect in the Pb doped sample below 120 K in resistivity, ac susceptibility and in magnetization. This suggests that the AFM interactions introduced by the Fe are most effective in the Pb doped composition leading to increased competition between the FM and AFM interactions. This FM and AFM interaction generates some degree of frustration leading to the appearance of spin glass like phase whose typical magnetic behavior is studied for small ion when the metallic like behavior is lost.  相似文献   

10.
孙晓东  徐宝  吴鸿业  曹凤泽  赵建军  鲁毅 《物理学报》2017,66(15):157501-157501
研究了Tb掺杂对双层锰氧化物La_(4/3)Sr_(5/3)Mn_2O_7磁熵变和电输运性质的影响.样品采用传统固相反应法制备,两样品的名义组分可以表示为(La_(1-x)Tb_x)_(4/3)Sr_(5/3)Mn_2O_7(x=0,0.025),磁场为7 T时的最大磁熵变?S_M分别为-4.60 J/(kg·K)和-4.18 J/(kg·K).比较后发现,Tb元素的掺杂使得最大磁熵变值减小,但同时增大了相对制冷温区.电性测量结果表明,x=0.025的样品在高温区的导电机制可以用小极化子模型解释,与母体三维变程跳跃模型不同;当温度降低至三维长程铁磁有序温度(T_c~(3D))附近时,掺杂样品发生金属绝缘相变;掺杂后样品在T_c~(3D)附近,磁电阻取得极大值(约为56%),表明是本征磁电阻效应.  相似文献   

11.
The magnetic and transport properties of the Cr-doped manganites La(0.46)Sr(0.54)Mn(1-y)Cr(y)O3 ( 0 < or = y < or = 0.08) with the A-type antiferromagnetic structure were investigated. Upon cooling, we find multiple magnetic phase transitions, i.e., paramagnetic, ferromagnetic (FM), antiferromagnetic (AFM), and spin glass in the y = 0.02 sample. The low temperature spin glass state is not a conventional spin glass with randomly oriented magnetic moments but has a reentrant character. The reentrant spin glass behavior accompanied by the anomalous multiple magnetic transitions might be due to the competing interactions between the FM phase and the A-type AFM matrix induced by the random Cr impurity.  相似文献   

12.
N. I. Solin 《JETP Letters》2010,91(12):675-680
The existence of clusters in weakly doped lanthanum manganites at temperatures about twice as high as their Curie temperature T C has been shown. Electrical resistance in weakly doped lanthanum manganites obeys the Efros-Shklovskii law. The temperature and magnetic-field dependences of a cluster size determined from the magnetotransport properties have been described using the model of phase separation into small metallic droplets within the dielectric paramagnetic and antiferromagnetic matrices. The results agree with the existence of the Griffiths phase.  相似文献   

13.
By using density matrix renormalization group (DMRG) method a model for organic molecule-based ferromagnetic chain is proposed. It is found that the ground states of Undoped and doped systems both exhibit ferrimagnetic ordering. The e-e repulsion plays an important role in the stability of the ferromagnetic state either in doped system or undoped system. For the undoped system, each unit cell coatains half of the total spins, which is consistent with Lieb's theorem. It is convinced that when the system is doped with one electron, a charge density wave is excited, which decreases the amplitude of spin density wave,therefore acting against the stability of ferromagnetic state.  相似文献   

14.
Undoped and cobalt doped titania (TiO2) thin films have been prepared on Si(1 0 0) monocrystal and quartz substrate using the sol-gel deposition method and annealed in air at 450, 550, 650, 750, 850, 950 and 1050 °C. Several experimental techniques (AFM, XRD, Raman spectroscopy, XRR, EDX, XPS, XAS, UV-VIS spectroscopy) have been used to characterize these films. Further more the degree of light induced hydrophilicity was estimated by measuring the contact angle of a water droplet on the film. Increase of the annealing temperature and in smaller degree also cobalt doping predispose titania crystallite growth. The rutile phase was detected at lower temperatures in the cobalt doped films than in the undoped titania films. Cobalt in the cobalt doped TiO2 was seen to be in Co2+ oxidation state, mainly in CoTiO3 phase when films were annealed at temperatures higher than 650 °C. Cobalt compounds segregated into the sub-surface region and to the surface of the titania, where they formed islands. Cobalt doping red-shifted the fundamental absorption edge further into the visible range, however it did not enhance the light induced hydrophilicity of the thin film surface as compared to the undoped titania thin films.  相似文献   

15.
Polycrystalline manganites Pr0.8Na0.2MnO3 doped by ruthenium (0.0≤xRu≤0.2) were prepared by the sol-gel process. The magnetic field induced metamagnetism was observed to occur with a large resistivity drop at 3 K for xRu≤0.02 samples, which can be sorted into the kind of CMR phenomenon. It was found that the 0.01 Ru doping increased TC and decreased the metamagnetic critical field than that of the undoped sample. The doped manganites show a quick increase in their magnetic moments as xRu increases from 0.01 to 0.04, but the larger fraction of Ru doping (0.04≤xRu≤0.2) reduces their M and TC. All the five doped samples have larger magnetic moments than that of the host sample. Ru doping of xRu>0.01 results in a rapid disappearance for the observation of long range spin and charge ordering in the samples’ M-T curves, which is characteristic of the undoped sample. It was found that larger low-temperature MR favored decrease in the metamagnetic critical field. Finally, the phase diagram of Ru doping vs. transition temperatures is presented to summarize the experiments.  相似文献   

16.
Lin X  Shen C  Lv C  Miao J  Tan H  Cao G  Xu ZA 《J Phys Condens Matter》2011,23(46):464203
There is an anomalous broad hump in the normal state resistivity in hole-type 1111 phase FeAs-based superconductors and its origin is an open issue. We study the effect of Zn doping on this anomaly in order to determine whether it is associated with the residual structural/antiferromagnetic (AFM) phase transition as in the parent compounds. A series of Zn doped Pr?.?Sr?.?FeAsO samples are prepared and their resistivity, magnetoresistance, Hall effect and specific heat are measured. Zn doping should not introduce extra charge carriers, and instead it can suppress the structural/AFM transition efficiently in the parent LaFeAsO system. The hump in resistivity remains unchanged with 6% Zn doping in Pr?.?Sr?.?FeAsO. The measurements of magnetoresistance reveal that the magnetoresistance is negligible in the Zn doped Pr?.?Sr?.?FeAsO samples, in contrast to the large positive magnetoresistance below the temperature of structure/AFM phase transition in the parent compound PrFeAsO. The results indicate that the anomalous broad hump in resistivity does not originate from the structural/AFM transition. The Hall effect and specific heat data are also consistent with this conclusion.  相似文献   

17.
DC electrical conductivity (σdc) of electron-doped antiferromagnetic CaMn1−xCrxO3 (0?x?0.3) has been discussed elaborately in the light of polaron hopping conduction. The increase in Cr doping concentration increases the conductivity and decreases the activation energy. Non-adiabatic polaron hopping conduction is observed in all the manganites at high temperatures. The analysis of σdc data shows that small polarons are formed at lower concentrations (?5%) of Cr doping and undoped samples. However, large polarons are materialized at higher doping (?10%) concentrations. This is consistent with the fact that doped Cr3+ has larger ionic size compared to that of Mn4+. Again, strong electron-phonon (e-ph) interaction is perceived in undoped and 5% Cr-doped samples but not in manganites with larger doping concentration. This also confirms the formation of larger polarons with the increase of x. Mott's variable range hopping (VRH) model can elucidate the dc conductivity at very low temperatures. It has been detected that single phonon-assisted hopping is responsible for the dc conduction in the Cr-doped CaMnO3 manganites.  相似文献   

18.
The results of investigations of the transport and magnetic properties (ac linear and nonlinear (second- and third-order) susceptibilities) of La0.8Ca0.2MnO3 and La0.8Ca0.2CoO3 single crystals have been presented. It has been found that both compounds in the paramagnetic phase contain ferromagnetic clusters with close magnetic characteristics. At high temperatures, ferromagnetic clusters nucleate in preferred sites associated with chemical inhomogeneities. Cooling below a specific temperature is accompanied by homogeneous nucleation of clusters. These two stages are observed in both compounds. In the doped cobaltite, the coalescence of clusters begins to develop at the third stage, whereas in the manganite, their behavior changes due to the development of ferromagnetic ordering of the matrix. These features indicate that the cluster state in doped manganites and cobaltites has a common nature. The difference in the behavior of ferromagnetic clusters is a consequence of the magnetically active character of the matrix in the case of manganites and the neutral character of the matrix in the case of cobaltites.  相似文献   

19.
By using density matrix renormalization group (DMRG) method a model for organic molecule-based ferromagnetic chain is proposed. It is found that the ground states of undoped and doped systems both exhibit ferrimagnetic ordering. The e-e repulsion plays an important role in the stability of the ferromagnetic state either in doped system or undoped system. For the undoped system, each unit cell contains half of the total spins, which is consistent with Lieb‘s theorem. It is convinced that when the system is doped with one electron, a charge density wave is excited, which decreases the amplitude of spin density wave, therefore acting against the stability of ferromagnetic state.  相似文献   

20.
We have studied heteroepitaxially grown ramp type structures consisting of high-temperature superconductors (HTS) and doped manganites in various configurations. Firstly, the coupling of two HTS electrodes via doped manganite barriers was analyzed and secondly the interface properties between HTS and doped manganites as well as between doped manganites with different Curie temperatures have been investigated. As a common feature of the interfaces involving doped manganites an increase in resistance at low temperatures was found which appears together with non-linear current–voltage characteristics. On applying external magnetic fields up to 8 T, the low temperature interface resistance is suppressed considerably. These observations can be understood in terms of a spin glass behavior of the doped manganites just at the interface caused by strain due to lattice misfit and disorder. The differential conductance spectra of YBa2Cu3O7−δ–La2/3Ca1/3MnO3 junctions with low transparency show a pronounced gap feature but no zero-bias conductance peak.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号