首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper gives a direct, short and unified proof of Rabinowitz's Theorem, Grossinho-Minhós-Tersian's Theorem and Tersian-Chaparova's Theorems on existence of homoclinic orbits for second order periodic Hamiltonian systems, fourth and sixth order periodic ordinary differential equations, respectively, by Brezis-Nirenberg type Mountain Pass Lemma.  相似文献   

2.
A useful tool for studying nonlinear differential equations is index theory. For symplectic paths on bounded intervals, the index theory has been completely established, which revealed tremendous applications in the study of periodic orbits of Hamiltonian systems. Nevertheless, analogous questions concerning homoclinic orbits are still left open. In this paper we use a geometric approach to set up Maslov index for homoclinic orbits of Hamiltonian systems. On the other hand, a relative Morse index for homoclinic orbits will be derived through Fredholm index theory. It will be shown that these two indices coincide.  相似文献   

3.
We consider 4-dimensional, real, analytic Hamiltonian systems with a saddle center equilibrium (related to a pair of real and a pair of imaginary eigenvalues) and a homoclinic orbit to it. We find conditions for the existence of transversal homoclinic orbits to periodic orbits of long period in every energy level sufficiently close to the energy level of the saddle center equilibrium. We also consider one-parameter families of reversible, 4-dimensional Hamiltonian systems. We prove that the set of parameter values where the system has homoclinic orbits to a saddle center equilibrium has no isolated points. We also present similar results for systems with heteroclinic orbits to saddle center equilibria. © 1997 John Wiley & Sons, Inc.  相似文献   

4.
We consider a real analytic Hamiltonian system with two degrees of freedom having a homoclinic orbit to a saddle-center equilibrium (two nonzero real and two nonzero imaginary eigenvalues). We take a two-parameter unfolding for such a system and show that in the nonresonance case, there are countable sets of multi-round homoclinic orbits to a saddle-center. We also find families of periodic orbits accumulating at homoclinic orbits. Bibliography: 6 titles.__________Published in Zapiski Nauchnykh Seminarov POMI, Vol. 300, 2003, pp. 187–193.  相似文献   

5.
We consider hyperbolic tori of three degrees of freedom initially hyperbolic Hamiltonian systems. We prove that if the stable and unstable manifold of a hyperbolic torus intersect transversaly, then there exists a hyperbolic invariant set near a homoclinic orbit on which the dynamics is conjugated to a Bernoulli shift. The proof is based on a new geometrico-dynamical feature of partially hyperbolic systems, the transversality-torsion phenomenon, which produces complete hyperbolicity from partial hyperbolicity. We deduce the existence of infinitely many hyperbolic periodic orbits near the given torus. The relevance of these results for the instability of near-integrable Hamiltonian systems is then discussed. For a given transition chain, we construct chain of hyperbolic periodic orbits. Then we easily prove the existence of periodic orbits of arbitrarily high period close to such chain using standard results on hyperbolic sets.  相似文献   

6.
We establish the existence of several classes of multi-bump orbits homoclinic to resonance bands for completely-integrable Hamiltonian systems subject to small-amplitude Hamiltonian or dissipative perturbations. Each bump is a fast excursion away from the resonance band, and the bumps are interspersed with slow segments near the resonance band. The homoclinic orbits, which include multi-bump \v{S}ilnikov orbits, connect equilibria and periodic orbits in the resonance band. The main tools we use in the existence proofs are the exchange lemma with exponentially small error and the existence theory of orbits homoclinic to resonance bands which make only one fast excursion away from the resonance bands.

  相似文献   


7.
This paper is devoted to the existence and multiplicity of homoclinic orbits for a class of fractional-order Hamiltonian systems with left and right Liouville–Weyl fractional derivatives. Here, we present a new approach via variational methods and critical point theory to obtain sufficient conditions under which the Hamiltonian system has at least one homoclinic orbit or multiple homoclinic orbits. Some results are new even for second-order Hamiltonian systems.  相似文献   

8.
Invariant manifold play an important role in the qualitative analysis of dynamical systems, such as in studying homoclinic orbit and heteroclinic orbit. This paper focuses on stable and unstable manifolds of hyperbolic singular points. For a type of n-dimensional quadratic system, such as Lorenz system, Chen system, Rossler system if n = 3, we provide the series expression of manifolds near the hyperbolic singular point, and proved its convergence using the proof of the formal power series. The expressions can be used to investigate the heteroclinic orbits and homoclinic orbits of hyperbolic singular points.  相似文献   

9.
We prove the existence of horseshoes in the nearly symmetric heavy top. This problem was previously addressed but treated inappropriately due to a singularity of the equations of motion. We introduce an (artificial) inclined plane to remove this singularity and use a Melnikov-type approach to show that there exist transverse homoclinic orbits to periodic orbits on four-dimensional level sets. The price we pay for removing the singularity is that the Hamiltonian system becomes a three-degree-of-freedom system with an additional first integral, unlike the two-degree-of-freedom formulation in the classical treatment. We therefore have to analyze three-dimensional stable and unstable manifolds of periodic orbits in a six-dimensional phase space. A new Melnikov-type technique is developed for this situation. Numerical evidence for the existence of transverse homoclinic orbits on a four-dimensional level set is also given.  相似文献   

10.
For a piecewise analytical Hamiltonian system with a cusp on a switch line, which has a family of periodic orbits near a generalized homoclinic loop, we study the maximum number of limit cycles bifurcating from the periodic orbits. For doing so, we first obtain the asymptotic expressions of the Melnikov functions near the loop. Finally we present two examples illustrating applications of the main results.  相似文献   

11.
研究一类含有两个参数和有理奇性平面哈密顿系统的同宿与异宿轨道,该问题来源于一个关于聚合物流体剪切流动特性的研究.借助常微定性理论和不变流形分析的方法,文中给出了系统存在同宿与异宿轨道的条件,并通过数值计算检验了所得理论结果。  相似文献   

12.
The numerical study of Dynamical Systems leads to obtain invariant objects of the systems such as periodic orbits, invariant tori, attractors and so on, that helps to the global understanding of the problem. In this paper we focus on the rigorous computation of periodic orbits and their distribution on the phase space, which configures the so called skeleton of the system. We use Computer Assisted Proof techniques to make a rigorous proof of the existence and the stability of families of periodic orbits in two-degrees of freedom Hamiltonian systems, which provide rigorous skeletons of periodic orbits. To that goal we show how to prove the existence and stability of a huge set of discrete initial conditions of periodic orbits, and later, how to prove the existence and stability of continuous families of periodic orbits. We illustrate the approach with two paradigmatic problems: the Hénon–Heiles Hamiltonian and the Diamagnetic Kepler problem.  相似文献   

13.
Index theory revealed its outstanding role in the study of periodic orbits of Hamiltonian systems and the dynamical consequences of this theory are enormous. Although the index theory in the periodic case is well-established, very few results are known in the case of homoclinic orbits of Hamiltonian systems. Moreover, to the authors’ knowledge, no results have been yet proved in the case of heteroclinic and halfclinic (i.e. parametrized by a half-line) orbits. Motivated by the importance played by these motions in understanding several challenging problems in Classical Mechanics, we develop a new index theory and we prove at once a general spectral flow formula for heteroclinic, homoclinic and halfclinic trajectories. Finally we show how this index theory can be used to recover all the (classical) existing results on orbits parametrized by bounded intervals.  相似文献   

14.
We give a proof of the Poincaré-Melnikov method in the case of non-Hamiltonian perturbations of one and a half degrees of freedom Hamiltonians, having orbits homoclinic to degenerate periodic orbits of parabolic type. Received November 20, 1995  相似文献   

15.
The main aims of this paper are to study the persistence of homoclinic and heteroclinic orbits of the reduced systems on normally hyperbolic critical manifolds, and also the limit cycle bifurcations either from the homoclinic loop of the reduced systems or from a family of periodic orbits of the layer systems. For the persistence of homoclinic and heteroclinic orbits, and the limit cycles bifurcating from a homolinic loop of the reduced systems, we provide a new and readily detectable method to characterize them compared with the usual Melnikov method when the reduced system forms a generalized rotated vector field. To determine the limit cycles bifurcating from the families of periodic orbits of the layer systems, we apply the averaging methods.We also provide two four-dimensional singularly perturbed differential systems, which have either heteroclinic or homoclinic orbits located on the slow manifolds and also three limit cycles bifurcating from the periodic orbits of the layer system.  相似文献   

16.
In this paper, we study the dynamical behavior for a 4-dimensional reversible system near its heteroclinic loop connecting a saddle-focus and a saddle. The existence of infinitely many reversible 1-homoclinic orbits to the saddle and 2-homoclinic orbits to the saddle-focus is shown. And it is also proved that, corresponding to each 1-homoclinic (resp. 2-homoclinic) orbit F, there is a spiral segment such that the associated orbits starting from the segment are all reversible 1-periodic (resp. 2-periodic) and accumulate onto F. Moreover, each 2-homoclinic orbit may be also accumulated by a sequence of reversible 4-homoclinic orbits.  相似文献   

17.
In this paper we establish some new sufficient conditions on the existence of homoclinic solutions for a class of second-order Hamiltonian systems without a coercive potential. The proof is based on a new critical point theorem in combination with periodic approximation.  相似文献   

18.
We consider a perturbation of an integrable Hamiltonian system having an equilibrium point of elliptic-hyperbolic type, having a homoclinic orbit. More precisely, we consider an (n + 2)-degree-of-freedom near integrable Hamiltonian with n centers and 2 saddles, and assume that the homoclinic orbit is preserved under the perturbation. On the center manifold near the equilibrium, there is a Cantorian family of hyperbolic KAM tori, and we study the homoclinic intersections between the stable and unstable manifolds associated to such tori. We establish that, in general, the manifolds intersect along transverse homoclinic orbits. In a more concrete model, such homoclinic orbits can be detected, in a first approximation, from nondegenerate critical points of a Mel’nikov potential. We provide bounds for the number of transverse homoclinic orbits using that, in general, the potential will be a Morse function (which gives a lower bound) and can be approximated by a trigonometric polynomial (which gives an upper bound).  相似文献   

19.
1 IntroductionThispaperisdevotedtostudywhatkindofdiscreteschemesofthefollowing 2n dimen sionalHamiltoniansystemswithparameterinnormalform u=J2n H uT,  H =H(u ,λ) ,(1 )whereu∈R2n,λ∈R ,H∈Ck+1(R2n×R ,R) ,k≥ 6,andJ2n =0In-In 0 ,In:unitmatrixofordernhasthepropertyofinheritinghom…  相似文献   

20.
We consider three‐dimensional inviscid‐irrotational flow in a two‐layer fluid under the effects of gravity and surface tension, where the upper fluid is bounded above by a rigid lid and the lower fluid is bounded below by a flat bottom. We use a spatial dynamics approach and formulate the steady Euler equations as an infinite‐dimensional Hamiltonian system, where an unbounded spatial direction x is considered as a time‐like coordinate. In addition, we consider wave motions that are periodic in another direction z. By analyzing the dispersion relation, we detect several bifurcation scenarios, two of which we study further: a type of 00(is)(iκ0) resonance and a Hamiltonian Hopf bifurcation. The bifurcations are investigated by performing a center‐manifold reduction, which yields a finite‐dimensional Hamiltonian system. For this finite‐dimensional system, we establish the existence of periodic and homoclinic orbits, which correspond to, respectively, doubly periodic travelling waves and oblique travelling waves with a dark or bright solitary wave profile in the x direction. The former are obtained using a variational Lyapunov‐Schmidt reduction and the latter by first applying a normal form transformation and then studying the resulting canonical system of equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号